Spaces:
Runtime error
Runtime error
File size: 14,156 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
"""Wrapper around Prem's Chat API."""
from __future__ import annotations
import logging
import warnings
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Iterator,
List,
Optional,
Tuple,
Type,
Union,
)
from langchain_core.callbacks import (
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.language_models.llms import create_base_retry_decorator
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
HumanMessage,
HumanMessageChunk,
SystemMessage,
SystemMessageChunk,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import (
BaseModel,
Extra,
Field,
SecretStr,
root_validator,
)
from langchain_core.utils import get_from_dict_or_env
if TYPE_CHECKING:
from premai.api.chat_completions.v1_chat_completions_create import (
ChatCompletionResponseStream,
)
from premai.models.chat_completion_response import ChatCompletionResponse
logger = logging.getLogger(__name__)
class ChatPremAPIError(Exception):
"""Error with the `PremAI` API."""
def _truncate_at_stop_tokens(
text: str,
stop: Optional[List[str]],
) -> str:
"""Truncates text at the earliest stop token found."""
if stop is None:
return text
for stop_token in stop:
stop_token_idx = text.find(stop_token)
if stop_token_idx != -1:
text = text[:stop_token_idx]
return text
def _response_to_result(
response: ChatCompletionResponse,
stop: Optional[List[str]],
) -> ChatResult:
"""Converts a Prem API response into a LangChain result"""
if not response.choices:
raise ChatPremAPIError("ChatResponse must have at least one candidate")
generations: List[ChatGeneration] = []
for choice in response.choices:
role = choice.message.role
if role is None:
raise ChatPremAPIError(f"ChatResponse {choice} must have a role.")
# If content is None then it will be replaced by ""
content = _truncate_at_stop_tokens(text=choice.message.content or "", stop=stop)
if content is None:
raise ChatPremAPIError(f"ChatResponse must have a content: {content}")
if role == "assistant":
generations.append(
ChatGeneration(text=content, message=AIMessage(content=content))
)
elif role == "user":
generations.append(
ChatGeneration(text=content, message=HumanMessage(content=content))
)
else:
generations.append(
ChatGeneration(
text=content, message=ChatMessage(role=role, content=content)
)
)
if response.document_chunks is not None:
return ChatResult(
generations=generations,
llm_output={
"document_chunks": [
chunk.to_dict() for chunk in response.document_chunks
]
},
)
else:
return ChatResult(generations=generations, llm_output={"document_chunks": None})
def _convert_delta_response_to_message_chunk(
response: ChatCompletionResponseStream, default_class: Type[BaseMessageChunk]
) -> Tuple[
Union[BaseMessageChunk, HumanMessageChunk, AIMessageChunk, SystemMessageChunk],
Optional[str],
]:
"""Converts delta response to message chunk"""
_delta = response.choices[0].delta # type: ignore
role = _delta.get("role", "") # type: ignore
content = _delta.get("content", "") # type: ignore
additional_kwargs: Dict = {}
finish_reasons: Optional[str] = response.choices[0].finish_reason
if role == "user" or default_class == HumanMessageChunk:
return HumanMessageChunk(content=content), finish_reasons
elif role == "assistant" or default_class == AIMessageChunk:
return (
AIMessageChunk(content=content, additional_kwargs=additional_kwargs),
finish_reasons,
)
elif role == "system" or default_class == SystemMessageChunk:
return SystemMessageChunk(content=content), finish_reasons
elif role or default_class == ChatMessageChunk:
return ChatMessageChunk(content=content, role=role), finish_reasons
else:
return default_class(content=content), finish_reasons # type: ignore[call-arg]
def _messages_to_prompt_dict(
input_messages: List[BaseMessage],
) -> Tuple[Optional[str], List[Dict[str, str]]]:
"""Converts a list of LangChain Messages into a simple dict
which is the message structure in Prem"""
system_prompt: Optional[str] = None
examples_and_messages: List[Dict[str, str]] = []
for input_msg in input_messages:
if isinstance(input_msg, SystemMessage):
system_prompt = str(input_msg.content)
elif isinstance(input_msg, HumanMessage):
examples_and_messages.append(
{"role": "user", "content": str(input_msg.content)}
)
elif isinstance(input_msg, AIMessage):
examples_and_messages.append(
{"role": "assistant", "content": str(input_msg.content)}
)
else:
raise ChatPremAPIError("No such role explicitly exists")
return system_prompt, examples_and_messages
class ChatPremAI(BaseChatModel, BaseModel):
"""PremAI Chat models.
To use, you will need to have an API key. You can find your existing API Key
or generate a new one here: https://app.premai.io/api_keys/
"""
# TODO: Need to add the default parameters through prem-sdk here
project_id: int
"""The project ID in which the experiments or deployments are carried out.
You can find all your projects here: https://app.premai.io/projects/"""
premai_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
"""Prem AI API Key. Get it here: https://app.premai.io/api_keys/"""
model: Optional[str] = Field(default=None, alias="model_name")
"""Name of the model. This is an optional parameter.
The default model is the one deployed from Prem's LaunchPad: https://app.premai.io/projects/8/launchpad
If model name is other than default model then it will override the calls
from the model deployed from launchpad."""
temperature: Optional[float] = None
"""Model temperature. Value should be >= 0 and <= 1.0"""
max_tokens: Optional[int] = None
"""The maximum number of tokens to generate"""
max_retries: int = 1
"""Max number of retries to call the API"""
system_prompt: Optional[str] = ""
"""Acts like a default instruction that helps the LLM act or generate
in a specific way.This is an Optional Parameter. By default the
system prompt would be using Prem's Launchpad models system prompt.
Changing the system prompt would override the default system prompt.
"""
repositories: Optional[dict] = None
"""Add valid repository ids. This will be overriding existing connected
repositories (if any) and will use RAG with the connected repos.
"""
streaming: Optional[bool] = False
"""Whether to stream the responses or not."""
client: Any
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
allow_population_by_field_name = True
arbitrary_types_allowed = True
@root_validator()
def validate_environments(cls, values: Dict) -> Dict:
"""Validate that the package is installed and that the API token is valid"""
try:
from premai import Prem
except ImportError as error:
raise ImportError(
"Could not import Prem Python package."
"Please install it with: `pip install premai`"
) from error
try:
premai_api_key = get_from_dict_or_env(
values, "premai_api_key", "PREMAI_API_KEY"
)
values["client"] = Prem(api_key=premai_api_key)
except Exception as error:
raise ValueError("Your API Key is incorrect. Please try again.") from error
return values
@property
def _llm_type(self) -> str:
return "premai"
@property
def _default_params(self) -> Dict[str, Any]:
return {
"model": self.model,
"system_prompt": self.system_prompt,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"repositories": self.repositories,
}
def _get_all_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
kwargs_to_ignore = [
"top_p",
"tools",
"frequency_penalty",
"presence_penalty",
"logit_bias",
"stop",
"seed",
]
keys_to_remove = []
for key in kwargs:
if key in kwargs_to_ignore:
warnings.warn(f"WARNING: Parameter {key} is not supported in kwargs.")
keys_to_remove.append(key)
for key in keys_to_remove:
kwargs.pop(key)
all_kwargs = {**self._default_params, **kwargs}
for key in list(self._default_params.keys()):
if all_kwargs.get(key) is None or all_kwargs.get(key) == "":
all_kwargs.pop(key, None)
return all_kwargs
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
system_prompt, messages_to_pass = _messages_to_prompt_dict(messages) # type: ignore
if system_prompt is not None and system_prompt != "":
kwargs["system_prompt"] = system_prompt
all_kwargs = self._get_all_kwargs(**kwargs)
response = chat_with_retry(
self,
project_id=self.project_id,
messages=messages_to_pass,
stream=False,
run_manager=run_manager,
**all_kwargs,
)
return _response_to_result(response=response, stop=stop)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
system_prompt, messages_to_pass = _messages_to_prompt_dict(messages)
if stop is not None:
logger.warning("stop is not supported in langchain streaming")
if "system_prompt" not in kwargs:
if system_prompt is not None and system_prompt != "":
kwargs["system_prompt"] = system_prompt
all_kwargs = self._get_all_kwargs(**kwargs)
default_chunk_class = AIMessageChunk
for streamed_response in chat_with_retry(
self,
project_id=self.project_id,
messages=messages_to_pass,
stream=True,
run_manager=run_manager,
**all_kwargs,
):
try:
chunk, finish_reason = _convert_delta_response_to_message_chunk(
response=streamed_response, default_class=default_chunk_class
)
generation_info = (
dict(finish_reason=finish_reason)
if finish_reason is not None
else None
)
cg_chunk = ChatGenerationChunk(
message=chunk, generation_info=generation_info
)
if run_manager:
run_manager.on_llm_new_token(cg_chunk.text, chunk=cg_chunk)
yield cg_chunk
except Exception as _:
continue
def create_prem_retry_decorator(
llm: ChatPremAI,
*,
max_retries: int = 1,
run_manager: Optional[Union[CallbackManagerForLLMRun]] = None,
) -> Callable[[Any], Any]:
"""Create a retry decorator for PremAI API errors."""
import premai.models
errors = [
premai.models.api_response_validation_error.APIResponseValidationError,
premai.models.conflict_error.ConflictError,
premai.models.model_not_found_error.ModelNotFoundError,
premai.models.permission_denied_error.PermissionDeniedError,
premai.models.provider_api_connection_error.ProviderAPIConnectionError,
premai.models.provider_api_status_error.ProviderAPIStatusError,
premai.models.provider_api_timeout_error.ProviderAPITimeoutError,
premai.models.provider_internal_server_error.ProviderInternalServerError,
premai.models.provider_not_found_error.ProviderNotFoundError,
premai.models.rate_limit_error.RateLimitError,
premai.models.unprocessable_entity_error.UnprocessableEntityError,
premai.models.validation_error.ValidationError,
]
decorator = create_base_retry_decorator(
error_types=errors, max_retries=max_retries, run_manager=run_manager
)
return decorator
def chat_with_retry(
llm: ChatPremAI,
project_id: int,
messages: List[dict],
stream: bool = False,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Any:
"""Using tenacity for retry in completion call"""
retry_decorator = create_prem_retry_decorator(
llm, max_retries=llm.max_retries, run_manager=run_manager
)
@retry_decorator
def _completion_with_retry(
project_id: int,
messages: List[dict],
stream: Optional[bool] = False,
**kwargs: Any,
) -> Any:
response = llm.client.chat.completions.create(
project_id=project_id,
messages=messages,
stream=stream,
**kwargs,
)
return response
return _completion_with_retry(
project_id=project_id,
messages=messages,
stream=stream,
**kwargs,
)
|