Spaces:
Runtime error
Runtime error
File size: 8,039 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import logging
import threading
from typing import Any, Dict, List, Mapping, Optional
import requests
from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
AIMessage,
BaseMessage,
ChatMessage,
HumanMessage,
)
from langchain_core.outputs import ChatGeneration, ChatResult
from langchain_core.pydantic_v1 import root_validator
from langchain_core.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
def _convert_message_to_dict(message: BaseMessage) -> dict:
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
else:
raise ValueError(f"Got unknown type {message}")
return message_dict
@deprecated(
since="0.0.13",
alternative="langchain_community.chat_models.QianfanChatEndpoint",
)
class ErnieBotChat(BaseChatModel):
"""`ERNIE-Bot` large language model.
ERNIE-Bot is a large language model developed by Baidu,
covering a huge amount of Chinese data.
To use, you should have the `ernie_client_id` and `ernie_client_secret` set,
or set the environment variable `ERNIE_CLIENT_ID` and `ERNIE_CLIENT_SECRET`.
Note:
access_token will be automatically generated based on client_id and client_secret,
and will be regenerated after expiration (30 days).
Default model is `ERNIE-Bot-turbo`,
currently supported models are `ERNIE-Bot-turbo`, `ERNIE-Bot`, `ERNIE-Bot-8K`,
`ERNIE-Bot-4`, `ERNIE-Bot-turbo-AI`.
Example:
.. code-block:: python
from langchain_community.chat_models import ErnieBotChat
chat = ErnieBotChat(model_name='ERNIE-Bot')
Deprecated Note:
Please use `QianfanChatEndpoint` instead of this class.
`QianfanChatEndpoint` is a more suitable choice for production.
Always test your code after changing to `QianfanChatEndpoint`.
Example of `QianfanChatEndpoint`:
.. code-block:: python
from langchain_community.chat_models import QianfanChatEndpoint
qianfan_chat = QianfanChatEndpoint(model="ERNIE-Bot",
endpoint="your_endpoint", qianfan_ak="your_ak", qianfan_sk="your_sk")
"""
ernie_api_base: Optional[str] = None
"""Baidu application custom endpoints"""
ernie_client_id: Optional[str] = None
"""Baidu application client id"""
ernie_client_secret: Optional[str] = None
"""Baidu application client secret"""
access_token: Optional[str] = None
"""access token is generated by client id and client secret,
setting this value directly will cause an error"""
model_name: str = "ERNIE-Bot-turbo"
"""model name of ernie, default is `ERNIE-Bot-turbo`.
Currently supported `ERNIE-Bot-turbo`, `ERNIE-Bot`"""
system: Optional[str] = None
"""system is mainly used for model character design,
for example, you are an AI assistant produced by xxx company.
The length of the system is limiting of 1024 characters."""
request_timeout: Optional[int] = 60
"""request timeout for chat http requests"""
streaming: Optional[bool] = False
"""streaming mode. not supported yet."""
top_p: Optional[float] = 0.8
temperature: Optional[float] = 0.95
penalty_score: Optional[float] = 1
_lock = threading.Lock()
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
values["ernie_api_base"] = get_from_dict_or_env(
values, "ernie_api_base", "ERNIE_API_BASE", "https://aip.baidubce.com"
)
values["ernie_client_id"] = get_from_dict_or_env(
values,
"ernie_client_id",
"ERNIE_CLIENT_ID",
)
values["ernie_client_secret"] = get_from_dict_or_env(
values,
"ernie_client_secret",
"ERNIE_CLIENT_SECRET",
)
return values
def _chat(self, payload: object) -> dict:
base_url = f"{self.ernie_api_base}/rpc/2.0/ai_custom/v1/wenxinworkshop/chat"
model_paths = {
"ERNIE-Bot-turbo": "eb-instant",
"ERNIE-Bot": "completions",
"ERNIE-Bot-8K": "ernie_bot_8k",
"ERNIE-Bot-4": "completions_pro",
"ERNIE-Bot-turbo-AI": "ai_apaas",
"BLOOMZ-7B": "bloomz_7b1",
"Llama-2-7b-chat": "llama_2_7b",
"Llama-2-13b-chat": "llama_2_13b",
"Llama-2-70b-chat": "llama_2_70b",
}
if self.model_name in model_paths:
url = f"{base_url}/{model_paths[self.model_name]}"
else:
raise ValueError(f"Got unknown model_name {self.model_name}")
resp = requests.post(
url,
timeout=self.request_timeout,
headers={
"Content-Type": "application/json",
},
params={"access_token": self.access_token},
json=payload,
)
return resp.json()
def _refresh_access_token_with_lock(self) -> None:
with self._lock:
logger.debug("Refreshing access token")
base_url: str = f"{self.ernie_api_base}/oauth/2.0/token"
resp = requests.post(
base_url,
timeout=10,
headers={
"Content-Type": "application/json",
"Accept": "application/json",
},
params={
"grant_type": "client_credentials",
"client_id": self.ernie_client_id,
"client_secret": self.ernie_client_secret,
},
)
self.access_token = str(resp.json().get("access_token"))
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
raise ValueError("`streaming` option currently unsupported.")
if not self.access_token:
self._refresh_access_token_with_lock()
payload = {
"messages": [_convert_message_to_dict(m) for m in messages],
"top_p": self.top_p,
"temperature": self.temperature,
"penalty_score": self.penalty_score,
"system": self.system,
**kwargs,
}
logger.debug(f"Payload for ernie api is {payload}")
resp = self._chat(payload)
if resp.get("error_code"):
if resp.get("error_code") == 111:
logger.debug("access_token expired, refresh it")
self._refresh_access_token_with_lock()
resp = self._chat(payload)
else:
raise ValueError(f"Error from ErnieChat api response: {resp}")
return self._create_chat_result(resp)
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
if "function_call" in response:
additional_kwargs = {
"function_call": dict(response.get("function_call", {}))
}
else:
additional_kwargs = {}
generations = [
ChatGeneration(
message=AIMessage(
content=response.get("result", ""),
additional_kwargs={**additional_kwargs},
)
)
]
token_usage = response.get("usage", {})
llm_output = {"token_usage": token_usage, "model_name": self.model_name}
return ChatResult(generations=generations, llm_output=llm_output)
@property
def _llm_type(self) -> str:
return "ernie-bot-chat"
|