Spaces:
Runtime error
Runtime error
File size: 8,513 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import json
import logging
from typing import Any, Dict, Iterator, List, Mapping, Optional, Union
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.chat_models import (
BaseChatModel,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
HumanMessage,
HumanMessageChunk,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import (
convert_to_secret_str,
get_from_dict_or_env,
)
logger = logging.getLogger(__name__)
DEFAULT_API_BASE = "https://api.coze.com"
def _convert_message_to_dict(message: BaseMessage) -> dict:
message_dict: Dict[str, Any]
if isinstance(message, HumanMessage):
message_dict = {
"role": "user",
"content": message.content,
"content_type": "text",
}
else:
message_dict = {
"role": "assistant",
"content": message.content,
"content_type": "text",
}
return message_dict
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> Union[BaseMessage, None]:
msg_type = _dict["type"]
if msg_type != "answer":
return None
role = _dict["role"]
if role == "user":
return HumanMessage(content=_dict["content"])
elif role == "assistant":
return AIMessage(content=_dict.get("content", "") or "")
else:
return ChatMessage(content=_dict["content"], role=role)
def _convert_delta_to_message_chunk(_dict: Mapping[str, Any]) -> BaseMessageChunk:
role = _dict.get("role")
content = _dict.get("content") or ""
if role == "user":
return HumanMessageChunk(content=content)
elif role == "assistant":
return AIMessageChunk(content=content)
else:
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type]
class ChatCoze(BaseChatModel):
"""ChatCoze chat models API by coze.com
For more information, see https://www.coze.com/open/docs/chat
"""
@property
def lc_secrets(self) -> Dict[str, str]:
return {
"coze_api_key": "COZE_API_KEY",
}
@property
def lc_serializable(self) -> bool:
return True
coze_api_base: str = Field(default=DEFAULT_API_BASE)
"""Coze custom endpoints"""
coze_api_key: Optional[SecretStr] = None
"""Coze API Key"""
request_timeout: int = Field(default=60, alias="timeout")
"""request timeout for chat http requests"""
bot_id: str = Field(default="")
"""The ID of the bot that the API interacts with."""
conversation_id: str = Field(default="")
"""Indicate which conversation the dialog is taking place in. If there is no need to
distinguish the context of the conversation(just a question and answer), skip this
parameter. It will be generated by the system."""
user: str = Field(default="")
"""The user who calls the API to chat with the bot."""
streaming: bool = False
"""Whether to stream the response to the client.
false: if no value is specified or set to false, a non-streaming response is
returned. "Non-streaming response" means that all responses will be returned at once
after they are all ready, and the client does not need to concatenate the content.
true: set to true, partial message deltas will be sent .
"Streaming response" will provide real-time response of the model to the client, and
the client needs to assemble the final reply based on the type of message. """
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
values["coze_api_base"] = get_from_dict_or_env(
values,
"coze_api_base",
"COZE_API_BASE",
DEFAULT_API_BASE,
)
values["coze_api_key"] = convert_to_secret_str(
get_from_dict_or_env(
values,
"coze_api_key",
"COZE_API_KEY",
)
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Coze API."""
return {
"bot_id": self.bot_id,
"conversation_id": self.conversation_id,
"user": self.user,
"streaming": self.streaming,
}
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
stream_iter = self._stream(
messages=messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
r = self._chat(messages, **kwargs)
res = r.json()
if res["code"] != 0:
raise ValueError(
f"Error from Coze api response: {res['code']}: {res['msg']}, "
f"logid: {r.headers.get('X-Tt-Logid')}"
)
return self._create_chat_result(res.get("messages") or [])
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
res = self._chat(messages, **kwargs)
for chunk in res.iter_lines():
chunk = chunk.decode("utf-8").strip("\r\n")
parts = chunk.split("data:", 1)
chunk = parts[1] if len(parts) > 1 else None
if chunk is None:
continue
response = json.loads(chunk)
if response["event"] == "done":
break
elif (
response["event"] != "message"
or response["message"]["type"] != "answer"
):
continue
chunk = _convert_delta_to_message_chunk(response["message"])
cg_chunk = ChatGenerationChunk(message=chunk)
if run_manager:
run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
yield cg_chunk
def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response:
parameters = {**self._default_params, **kwargs}
query = ""
chat_history = []
for msg in messages:
if isinstance(msg, HumanMessage):
query = f"{msg.content}" # overwrite, to get last user message as query
chat_history.append(_convert_message_to_dict(msg))
conversation_id = parameters.pop("conversation_id")
bot_id = parameters.pop("bot_id")
user = parameters.pop("user")
streaming = parameters.pop("streaming")
payload = {
"conversation_id": conversation_id,
"bot_id": bot_id,
"user": user,
"query": query,
"stream": streaming,
}
if chat_history:
payload["chat_history"] = chat_history
url = self.coze_api_base + "/open_api/v2/chat"
api_key = ""
if self.coze_api_key:
api_key = self.coze_api_key.get_secret_value()
res = requests.post(
url=url,
timeout=self.request_timeout,
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}",
},
json=payload,
stream=streaming,
)
if res.status_code != 200:
logid = res.headers.get("X-Tt-Logid")
raise ValueError(f"Error from Coze api response: {res}, logid: {logid}")
return res
def _create_chat_result(self, messages: List[Mapping[str, Any]]) -> ChatResult:
generations = []
for c in messages:
msg = _convert_dict_to_message(c)
if msg:
generations.append(ChatGeneration(message=msg))
llm_output = {"token_usage": "", "model": ""}
return ChatResult(generations=generations, llm_output=llm_output)
@property
def _llm_type(self) -> str:
return "coze-chat"
|