File size: 8,226 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional

from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    agenerate_from_stream,
    generate_from_stream,
)
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    ChatMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult

from langchain_community.llms.cohere import BaseCohere


def get_role(message: BaseMessage) -> str:
    """Get the role of the message.

    Args:
        message: The message.

    Returns:
        The role of the message.

    Raises:
        ValueError: If the message is of an unknown type.
    """
    if isinstance(message, ChatMessage) or isinstance(message, HumanMessage):
        return "User"
    elif isinstance(message, AIMessage):
        return "Chatbot"
    elif isinstance(message, SystemMessage):
        return "System"
    else:
        raise ValueError(f"Got unknown type {message}")


def get_cohere_chat_request(
    messages: List[BaseMessage],
    *,
    connectors: Optional[List[Dict[str, str]]] = None,
    **kwargs: Any,
) -> Dict[str, Any]:
    """Get the request for the Cohere chat API.

    Args:
        messages: The messages.
        connectors: The connectors.
        **kwargs: The keyword arguments.

    Returns:
        The request for the Cohere chat API.
    """
    documents = (
        None
        if "source_documents" not in kwargs
        else [
            {
                "snippet": doc.page_content,
                "id": doc.metadata.get("id") or f"doc-{str(i)}",
            }
            for i, doc in enumerate(kwargs["source_documents"])
        ]
    )
    kwargs.pop("source_documents", None)
    maybe_connectors = connectors if documents is None else None

    # by enabling automatic prompt truncation, the probability of request failure is
    # reduced with minimal impact on response quality
    prompt_truncation = (
        "AUTO" if documents is not None or connectors is not None else None
    )

    req = {
        "message": messages[-1].content,
        "chat_history": [
            {"role": get_role(x), "message": x.content} for x in messages[:-1]
        ],
        "documents": documents,
        "connectors": maybe_connectors,
        "prompt_truncation": prompt_truncation,
        **kwargs,
    }

    return {k: v for k, v in req.items() if v is not None}


@deprecated(
    since="0.0.30", removal="0.3.0", alternative_import="langchain_cohere.ChatCohere"
)
class ChatCohere(BaseChatModel, BaseCohere):
    """`Cohere` chat large language models.

    To use, you should have the ``cohere`` python package installed, and the
    environment variable ``COHERE_API_KEY`` set with your API key, or pass
    it as a named parameter to the constructor.

    Example:
        .. code-block:: python

            from langchain_community.chat_models import ChatCohere
            from langchain_core.messages import HumanMessage

            chat = ChatCohere(model="command", max_tokens=256, temperature=0.75)

            messages = [HumanMessage(content="knock knock")]
            chat.invoke(messages)
    """

    class Config:
        """Configuration for this pydantic object."""

        allow_population_by_field_name = True
        arbitrary_types_allowed = True

    @property
    def _llm_type(self) -> str:
        """Return type of chat model."""
        return "cohere-chat"

    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling Cohere API."""
        return {
            "temperature": self.temperature,
        }

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        """Get the identifying parameters."""
        return {**{"model": self.model}, **self._default_params}

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        request = get_cohere_chat_request(messages, **self._default_params, **kwargs)

        if hasattr(self.client, "chat_stream"):  # detect and support sdk v5
            stream = self.client.chat_stream(**request)
        else:
            stream = self.client.chat(**request, stream=True)

        for data in stream:
            if data.event_type == "text-generation":
                delta = data.text
                chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta))
                if run_manager:
                    run_manager.on_llm_new_token(delta, chunk=chunk)
                yield chunk

    async def _astream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> AsyncIterator[ChatGenerationChunk]:
        request = get_cohere_chat_request(messages, **self._default_params, **kwargs)

        if hasattr(self.async_client, "chat_stream"):  # detect and support sdk v5
            stream = await self.async_client.chat_stream(**request)
        else:
            stream = await self.async_client.chat(**request, stream=True)

        async for data in stream:
            if data.event_type == "text-generation":
                delta = data.text
                chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta))
                if run_manager:
                    await run_manager.on_llm_new_token(delta, chunk=chunk)
                yield chunk

    def _get_generation_info(self, response: Any) -> Dict[str, Any]:
        """Get the generation info from cohere API response."""
        return {
            "documents": response.documents,
            "citations": response.citations,
            "search_results": response.search_results,
            "search_queries": response.search_queries,
            "token_count": response.token_count,
        }

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        if self.streaming:
            stream_iter = self._stream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return generate_from_stream(stream_iter)

        request = get_cohere_chat_request(messages, **self._default_params, **kwargs)
        response = self.client.chat(**request)

        message = AIMessage(content=response.text)
        generation_info = None
        if hasattr(response, "documents"):
            generation_info = self._get_generation_info(response)
        return ChatResult(
            generations=[
                ChatGeneration(message=message, generation_info=generation_info)
            ]
        )

    async def _agenerate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        if self.streaming:
            stream_iter = self._astream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return await agenerate_from_stream(stream_iter)

        request = get_cohere_chat_request(messages, **self._default_params, **kwargs)
        response = self.client.chat(**request)

        message = AIMessage(content=response.text)
        generation_info = None
        if hasattr(response, "documents"):
            generation_info = self._get_generation_info(response)
        return ChatResult(
            generations=[
                ChatGeneration(message=message, generation_info=generation_info)
            ]
        )

    def get_num_tokens(self, text: str) -> int:
        """Calculate number of tokens."""
        return len(self.client.tokenize(text=text).tokens)