File size: 10,959 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import re
from collections import defaultdict
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union

from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import (
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    ChatMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Extra

from langchain_community.chat_models.anthropic import (
    convert_messages_to_prompt_anthropic,
)
from langchain_community.chat_models.meta import convert_messages_to_prompt_llama
from langchain_community.llms.bedrock import BedrockBase
from langchain_community.utilities.anthropic import (
    get_num_tokens_anthropic,
    get_token_ids_anthropic,
)


def _convert_one_message_to_text_mistral(message: BaseMessage) -> str:
    if isinstance(message, ChatMessage):
        message_text = f"\n\n{message.role.capitalize()}: {message.content}"
    elif isinstance(message, HumanMessage):
        message_text = f"[INST] {message.content} [/INST]"
    elif isinstance(message, AIMessage):
        message_text = f"{message.content}"
    elif isinstance(message, SystemMessage):
        message_text = f"<<SYS>> {message.content} <</SYS>>"
    else:
        raise ValueError(f"Got unknown type {message}")
    return message_text


def convert_messages_to_prompt_mistral(messages: List[BaseMessage]) -> str:
    """Convert a list of messages to a prompt for mistral."""
    return "\n".join(
        [_convert_one_message_to_text_mistral(message) for message in messages]
    )


def _format_image(image_url: str) -> Dict:
    """
    Formats an image of format data:image/jpeg;base64,{b64_string}
    to a dict for anthropic api

    {
      "type": "base64",
      "media_type": "image/jpeg",
      "data": "/9j/4AAQSkZJRg...",
    }

    And throws an error if it's not a b64 image
    """
    regex = r"^data:(?P<media_type>image/.+);base64,(?P<data>.+)$"
    match = re.match(regex, image_url)
    if match is None:
        raise ValueError(
            "Anthropic only supports base64-encoded images currently."
            " Example: data:image/png;base64,'/9j/4AAQSk'..."
        )
    return {
        "type": "base64",
        "media_type": match.group("media_type"),
        "data": match.group("data"),
    }


def _format_anthropic_messages(
    messages: List[BaseMessage],
) -> Tuple[Optional[str], List[Dict]]:
    """Format messages for anthropic."""

    """
    [
        {
            "role": _message_type_lookups[m.type],
            "content": [_AnthropicMessageContent(text=m.content).dict()],
        }
        for m in messages
    ]
    """
    system: Optional[str] = None
    formatted_messages: List[Dict] = []
    for i, message in enumerate(messages):
        if message.type == "system":
            if i != 0:
                raise ValueError("System message must be at beginning of message list.")
            if not isinstance(message.content, str):
                raise ValueError(
                    "System message must be a string, "
                    f"instead was: {type(message.content)}"
                )
            system = message.content
            continue

        role = _message_type_lookups[message.type]
        content: Union[str, List[Dict]]

        if not isinstance(message.content, str):
            # parse as dict
            assert isinstance(
                message.content, list
            ), "Anthropic message content must be str or list of dicts"

            # populate content
            content = []
            for item in message.content:
                if isinstance(item, str):
                    content.append(
                        {
                            "type": "text",
                            "text": item,
                        }
                    )
                elif isinstance(item, dict):
                    if "type" not in item:
                        raise ValueError("Dict content item must have a type key")
                    if item["type"] == "image_url":
                        # convert format
                        source = _format_image(item["image_url"]["url"])
                        content.append(
                            {
                                "type": "image",
                                "source": source,
                            }
                        )
                    else:
                        content.append(item)
                else:
                    raise ValueError(
                        f"Content items must be str or dict, instead was: {type(item)}"
                    )
        else:
            content = message.content

        formatted_messages.append(
            {
                "role": role,
                "content": content,
            }
        )
    return system, formatted_messages


class ChatPromptAdapter:
    """Adapter class to prepare the inputs from Langchain to prompt format
    that Chat model expects.
    """

    @classmethod
    def convert_messages_to_prompt(
        cls, provider: str, messages: List[BaseMessage]
    ) -> str:
        if provider == "anthropic":
            prompt = convert_messages_to_prompt_anthropic(messages=messages)
        elif provider == "meta":
            prompt = convert_messages_to_prompt_llama(messages=messages)
        elif provider == "mistral":
            prompt = convert_messages_to_prompt_mistral(messages=messages)
        elif provider == "amazon":
            prompt = convert_messages_to_prompt_anthropic(
                messages=messages,
                human_prompt="\n\nUser:",
                ai_prompt="\n\nBot:",
            )
        else:
            raise NotImplementedError(
                f"Provider {provider} model does not support chat."
            )
        return prompt

    @classmethod
    def format_messages(
        cls, provider: str, messages: List[BaseMessage]
    ) -> Tuple[Optional[str], List[Dict]]:
        if provider == "anthropic":
            return _format_anthropic_messages(messages)

        raise NotImplementedError(
            f"Provider {provider} not supported for format_messages"
        )


_message_type_lookups = {
    "human": "user",
    "ai": "assistant",
    "AIMessageChunk": "assistant",
    "HumanMessageChunk": "user",
    "function": "user",
}


@deprecated(
    since="0.0.34", removal="0.3", alternative_import="langchain_aws.ChatBedrock"
)
class BedrockChat(BaseChatModel, BedrockBase):
    """Chat model that uses the Bedrock API."""

    @property
    def _llm_type(self) -> str:
        """Return type of chat model."""
        return "amazon_bedrock_chat"

    @classmethod
    def is_lc_serializable(cls) -> bool:
        """Return whether this model can be serialized by Langchain."""
        return True

    @classmethod
    def get_lc_namespace(cls) -> List[str]:
        """Get the namespace of the langchain object."""
        return ["langchain", "chat_models", "bedrock"]

    @property
    def lc_attributes(self) -> Dict[str, Any]:
        attributes: Dict[str, Any] = {}

        if self.region_name:
            attributes["region_name"] = self.region_name

        return attributes

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        provider = self._get_provider()
        prompt, system, formatted_messages = None, None, None

        if provider == "anthropic":
            system, formatted_messages = ChatPromptAdapter.format_messages(
                provider, messages
            )
        else:
            prompt = ChatPromptAdapter.convert_messages_to_prompt(
                provider=provider, messages=messages
            )

        for chunk in self._prepare_input_and_invoke_stream(
            prompt=prompt,
            system=system,
            messages=formatted_messages,
            stop=stop,
            run_manager=run_manager,
            **kwargs,
        ):
            delta = chunk.text
            yield ChatGenerationChunk(message=AIMessageChunk(content=delta))

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        completion = ""
        llm_output: Dict[str, Any] = {"model_id": self.model_id}

        if self.streaming:
            for chunk in self._stream(messages, stop, run_manager, **kwargs):
                completion += chunk.text
        else:
            provider = self._get_provider()
            prompt, system, formatted_messages = None, None, None
            params: Dict[str, Any] = {**kwargs}

            if provider == "anthropic":
                system, formatted_messages = ChatPromptAdapter.format_messages(
                    provider, messages
                )
            else:
                prompt = ChatPromptAdapter.convert_messages_to_prompt(
                    provider=provider, messages=messages
                )

            if stop:
                params["stop_sequences"] = stop

            completion, usage_info = self._prepare_input_and_invoke(
                prompt=prompt,
                stop=stop,
                run_manager=run_manager,
                system=system,
                messages=formatted_messages,
                **params,
            )

            llm_output["usage"] = usage_info

        return ChatResult(
            generations=[ChatGeneration(message=AIMessage(content=completion))],
            llm_output=llm_output,
        )

    def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
        final_usage: Dict[str, int] = defaultdict(int)
        final_output = {}
        for output in llm_outputs:
            output = output or {}
            usage = output.get("usage", {})
            for token_type, token_count in usage.items():
                final_usage[token_type] += token_count
            final_output.update(output)
        final_output["usage"] = final_usage
        return final_output

    def get_num_tokens(self, text: str) -> int:
        if self._model_is_anthropic:
            return get_num_tokens_anthropic(text)
        else:
            return super().get_num_tokens(text)

    def get_token_ids(self, text: str) -> List[int]:
        if self._model_is_anthropic:
            return get_token_ids_anthropic(text)
        else:
            return super().get_token_ids(text)