File size: 6,496 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
"""Callback handler for Context AI"""

import os
from typing import Any, Dict, List
from uuid import UUID

from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.messages import BaseMessage
from langchain_core.outputs import LLMResult
from langchain_core.utils import guard_import


def import_context() -> Any:
    """Import the `getcontext` package."""
    return (
        guard_import("getcontext", pip_name="python-context"),
        guard_import("getcontext.token", pip_name="python-context").Credential,
        guard_import(
            "getcontext.generated.models", pip_name="python-context"
        ).Conversation,
        guard_import("getcontext.generated.models", pip_name="python-context").Message,
        guard_import(
            "getcontext.generated.models", pip_name="python-context"
        ).MessageRole,
        guard_import("getcontext.generated.models", pip_name="python-context").Rating,
    )


class ContextCallbackHandler(BaseCallbackHandler):
    """Callback Handler that records transcripts to the Context service.

     (https://context.ai).

    Keyword Args:
        token (optional): The token with which to authenticate requests to Context.
            Visit https://with.context.ai/settings to generate a token.
            If not provided, the value of the `CONTEXT_TOKEN` environment
            variable will be used.

    Raises:
        ImportError: if the `context-python` package is not installed.

    Chat Example:
        >>> from langchain_community.llms import ChatOpenAI
        >>> from langchain_community.callbacks import ContextCallbackHandler
        >>> context_callback = ContextCallbackHandler(
        ...     token="<CONTEXT_TOKEN_HERE>",
        ... )
        >>> chat = ChatOpenAI(
        ...     temperature=0,
        ...     headers={"user_id": "123"},
        ...     callbacks=[context_callback],
        ...     openai_api_key="API_KEY_HERE",
        ... )
        >>> messages = [
        ...     SystemMessage(content="You translate English to French."),
        ...     HumanMessage(content="I love programming with LangChain."),
        ... ]
        >>> chat.invoke(messages)

    Chain Example:
        >>> from langchain.chains import LLMChain
        >>> from langchain_community.chat_models import ChatOpenAI
        >>> from langchain_community.callbacks import ContextCallbackHandler
        >>> context_callback = ContextCallbackHandler(
        ...     token="<CONTEXT_TOKEN_HERE>",
        ... )
        >>> human_message_prompt = HumanMessagePromptTemplate(
        ...     prompt=PromptTemplate(
        ...         template="What is a good name for a company that makes {product}?",
        ...         input_variables=["product"],
        ...    ),
        ... )
        >>> chat_prompt_template = ChatPromptTemplate.from_messages(
        ...   [human_message_prompt]
        ... )
        >>> callback = ContextCallbackHandler(token)
        >>> # Note: the same callback object must be shared between the
        ...   LLM and the chain.
        >>> chat = ChatOpenAI(temperature=0.9, callbacks=[callback])
        >>> chain = LLMChain(
        ...   llm=chat,
        ...   prompt=chat_prompt_template,
        ...   callbacks=[callback]
        ... )
        >>> chain.run("colorful socks")
    """

    def __init__(self, token: str = "", verbose: bool = False, **kwargs: Any) -> None:
        (
            self.context,
            self.credential,
            self.conversation_model,
            self.message_model,
            self.message_role_model,
            self.rating_model,
        ) = import_context()

        token = token or os.environ.get("CONTEXT_TOKEN") or ""

        self.client = self.context.ContextAPI(credential=self.credential(token))

        self.chain_run_id = None

        self.llm_model = None

        self.messages: List[Any] = []
        self.metadata: Dict[str, str] = {}

    def on_chat_model_start(
        self,
        serialized: Dict[str, Any],
        messages: List[List[BaseMessage]],
        *,
        run_id: UUID,
        **kwargs: Any,
    ) -> Any:
        """Run when the chat model is started."""
        llm_model = kwargs.get("invocation_params", {}).get("model", None)
        if llm_model is not None:
            self.metadata["model"] = llm_model

        if len(messages) == 0:
            return

        for message in messages[0]:
            role = self.message_role_model.SYSTEM
            if message.type == "human":
                role = self.message_role_model.USER
            elif message.type == "system":
                role = self.message_role_model.SYSTEM
            elif message.type == "ai":
                role = self.message_role_model.ASSISTANT

            self.messages.append(
                self.message_model(
                    message=message.content,
                    role=role,
                )
            )

    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        """Run when LLM ends."""
        if len(response.generations) == 0 or len(response.generations[0]) == 0:
            return

        if not self.chain_run_id:
            generation = response.generations[0][0]
            self.messages.append(
                self.message_model(
                    message=generation.text,
                    role=self.message_role_model.ASSISTANT,
                )
            )

            self._log_conversation()

    def on_chain_start(
        self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
    ) -> None:
        """Run when chain starts."""
        self.chain_run_id = kwargs.get("run_id", None)

    def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
        """Run when chain ends."""
        self.messages.append(
            self.message_model(
                message=outputs["text"],
                role=self.message_role_model.ASSISTANT,
            )
        )

        self._log_conversation()

        self.chain_run_id = None

    def _log_conversation(self) -> None:
        """Log the conversation to the context API."""
        if len(self.messages) == 0:
            return

        self.client.log.conversation_upsert(
            body={
                "conversation": self.conversation_model(
                    messages=self.messages,
                    metadata=self.metadata,
                )
            }
        )

        self.messages = []
        self.metadata = {}