File size: 11,448 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
from __future__ import annotations

import copy
import logging
from abc import ABC, abstractmethod
from dataclasses import dataclass
from enum import Enum
from typing import (
    AbstractSet,
    Any,
    Callable,
    Collection,
    Iterable,
    List,
    Literal,
    Optional,
    Sequence,
    Type,
    TypeVar,
    Union,
)

from langchain_core.documents import BaseDocumentTransformer, Document

logger = logging.getLogger(__name__)

TS = TypeVar("TS", bound="TextSplitter")


class TextSplitter(BaseDocumentTransformer, ABC):
    """Interface for splitting text into chunks."""

    def __init__(
        self,
        chunk_size: int = 4000,
        chunk_overlap: int = 200,
        length_function: Callable[[str], int] = len,
        keep_separator: Union[bool, Literal["start", "end"]] = False,
        add_start_index: bool = False,
        strip_whitespace: bool = True,
    ) -> None:
        """Create a new TextSplitter.

        Args:
            chunk_size: Maximum size of chunks to return
            chunk_overlap: Overlap in characters between chunks
            length_function: Function that measures the length of given chunks
            keep_separator: Whether to keep the separator and where to place it
                            in each corresponding chunk (True='start')
            add_start_index: If `True`, includes chunk's start index in metadata
            strip_whitespace: If `True`, strips whitespace from the start and end of
                              every document
        """
        if chunk_overlap > chunk_size:
            raise ValueError(
                f"Got a larger chunk overlap ({chunk_overlap}) than chunk size "
                f"({chunk_size}), should be smaller."
            )
        self._chunk_size = chunk_size
        self._chunk_overlap = chunk_overlap
        self._length_function = length_function
        self._keep_separator = keep_separator
        self._add_start_index = add_start_index
        self._strip_whitespace = strip_whitespace

    @abstractmethod
    def split_text(self, text: str) -> List[str]:
        """Split text into multiple components."""

    def create_documents(
        self, texts: List[str], metadatas: Optional[List[dict]] = None
    ) -> List[Document]:
        """Create documents from a list of texts."""
        _metadatas = metadatas or [{}] * len(texts)
        documents = []
        for i, text in enumerate(texts):
            index = 0
            previous_chunk_len = 0
            for chunk in self.split_text(text):
                metadata = copy.deepcopy(_metadatas[i])
                if self._add_start_index:
                    offset = index + previous_chunk_len - self._chunk_overlap
                    index = text.find(chunk, max(0, offset))
                    metadata["start_index"] = index
                    previous_chunk_len = len(chunk)
                new_doc = Document(page_content=chunk, metadata=metadata)
                documents.append(new_doc)
        return documents

    def split_documents(self, documents: Iterable[Document]) -> List[Document]:
        """Split documents."""
        texts, metadatas = [], []
        for doc in documents:
            texts.append(doc.page_content)
            metadatas.append(doc.metadata)
        return self.create_documents(texts, metadatas=metadatas)

    def _join_docs(self, docs: List[str], separator: str) -> Optional[str]:
        text = separator.join(docs)
        if self._strip_whitespace:
            text = text.strip()
        if text == "":
            return None
        else:
            return text

    def _merge_splits(self, splits: Iterable[str], separator: str) -> List[str]:
        # We now want to combine these smaller pieces into medium size
        # chunks to send to the LLM.
        separator_len = self._length_function(separator)

        docs = []
        current_doc: List[str] = []
        total = 0
        for d in splits:
            _len = self._length_function(d)
            if (
                total + _len + (separator_len if len(current_doc) > 0 else 0)
                > self._chunk_size
            ):
                if total > self._chunk_size:
                    logger.warning(
                        f"Created a chunk of size {total}, "
                        f"which is longer than the specified {self._chunk_size}"
                    )
                if len(current_doc) > 0:
                    doc = self._join_docs(current_doc, separator)
                    if doc is not None:
                        docs.append(doc)
                    # Keep on popping if:
                    # - we have a larger chunk than in the chunk overlap
                    # - or if we still have any chunks and the length is long
                    while total > self._chunk_overlap or (
                        total + _len + (separator_len if len(current_doc) > 0 else 0)
                        > self._chunk_size
                        and total > 0
                    ):
                        total -= self._length_function(current_doc[0]) + (
                            separator_len if len(current_doc) > 1 else 0
                        )
                        current_doc = current_doc[1:]
            current_doc.append(d)
            total += _len + (separator_len if len(current_doc) > 1 else 0)
        doc = self._join_docs(current_doc, separator)
        if doc is not None:
            docs.append(doc)
        return docs

    @classmethod
    def from_huggingface_tokenizer(cls, tokenizer: Any, **kwargs: Any) -> TextSplitter:
        """Text splitter that uses HuggingFace tokenizer to count length."""
        try:
            from transformers import PreTrainedTokenizerBase

            if not isinstance(tokenizer, PreTrainedTokenizerBase):
                raise ValueError(
                    "Tokenizer received was not an instance of PreTrainedTokenizerBase"
                )

            def _huggingface_tokenizer_length(text: str) -> int:
                return len(tokenizer.encode(text))

        except ImportError:
            raise ValueError(
                "Could not import transformers python package. "
                "Please install it with `pip install transformers`."
            )
        return cls(length_function=_huggingface_tokenizer_length, **kwargs)

    @classmethod
    def from_tiktoken_encoder(
        cls: Type[TS],
        encoding_name: str = "gpt2",
        model_name: Optional[str] = None,
        allowed_special: Union[Literal["all"], AbstractSet[str]] = set(),
        disallowed_special: Union[Literal["all"], Collection[str]] = "all",
        **kwargs: Any,
    ) -> TS:
        """Text splitter that uses tiktoken encoder to count length."""
        try:
            import tiktoken
        except ImportError:
            raise ImportError(
                "Could not import tiktoken python package. "
                "This is needed in order to calculate max_tokens_for_prompt. "
                "Please install it with `pip install tiktoken`."
            )

        if model_name is not None:
            enc = tiktoken.encoding_for_model(model_name)
        else:
            enc = tiktoken.get_encoding(encoding_name)

        def _tiktoken_encoder(text: str) -> int:
            return len(
                enc.encode(
                    text,
                    allowed_special=allowed_special,
                    disallowed_special=disallowed_special,
                )
            )

        if issubclass(cls, TokenTextSplitter):
            extra_kwargs = {
                "encoding_name": encoding_name,
                "model_name": model_name,
                "allowed_special": allowed_special,
                "disallowed_special": disallowed_special,
            }
            kwargs = {**kwargs, **extra_kwargs}

        return cls(length_function=_tiktoken_encoder, **kwargs)

    def transform_documents(
        self, documents: Sequence[Document], **kwargs: Any
    ) -> Sequence[Document]:
        """Transform sequence of documents by splitting them."""
        return self.split_documents(list(documents))


class TokenTextSplitter(TextSplitter):
    """Splitting text to tokens using model tokenizer."""

    def __init__(
        self,
        encoding_name: str = "gpt2",
        model_name: Optional[str] = None,
        allowed_special: Union[Literal["all"], AbstractSet[str]] = set(),
        disallowed_special: Union[Literal["all"], Collection[str]] = "all",
        **kwargs: Any,
    ) -> None:
        """Create a new TextSplitter."""
        super().__init__(**kwargs)
        try:
            import tiktoken
        except ImportError:
            raise ImportError(
                "Could not import tiktoken python package. "
                "This is needed in order to for TokenTextSplitter. "
                "Please install it with `pip install tiktoken`."
            )

        if model_name is not None:
            enc = tiktoken.encoding_for_model(model_name)
        else:
            enc = tiktoken.get_encoding(encoding_name)
        self._tokenizer = enc
        self._allowed_special = allowed_special
        self._disallowed_special = disallowed_special

    def split_text(self, text: str) -> List[str]:
        def _encode(_text: str) -> List[int]:
            return self._tokenizer.encode(
                _text,
                allowed_special=self._allowed_special,
                disallowed_special=self._disallowed_special,
            )

        tokenizer = Tokenizer(
            chunk_overlap=self._chunk_overlap,
            tokens_per_chunk=self._chunk_size,
            decode=self._tokenizer.decode,
            encode=_encode,
        )

        return split_text_on_tokens(text=text, tokenizer=tokenizer)


class Language(str, Enum):
    """Enum of the programming languages."""

    CPP = "cpp"
    GO = "go"
    JAVA = "java"
    KOTLIN = "kotlin"
    JS = "js"
    TS = "ts"
    PHP = "php"
    PROTO = "proto"
    PYTHON = "python"
    RST = "rst"
    RUBY = "ruby"
    RUST = "rust"
    SCALA = "scala"
    SWIFT = "swift"
    MARKDOWN = "markdown"
    LATEX = "latex"
    HTML = "html"
    SOL = "sol"
    CSHARP = "csharp"
    COBOL = "cobol"
    C = "c"
    LUA = "lua"
    PERL = "perl"
    HASKELL = "haskell"


@dataclass(frozen=True)
class Tokenizer:
    """Tokenizer data class."""

    chunk_overlap: int
    """Overlap in tokens between chunks"""
    tokens_per_chunk: int
    """Maximum number of tokens per chunk"""
    decode: Callable[[List[int]], str]
    """ Function to decode a list of token ids to a string"""
    encode: Callable[[str], List[int]]
    """ Function to encode a string to a list of token ids"""


def split_text_on_tokens(*, text: str, tokenizer: Tokenizer) -> List[str]:
    """Split incoming text and return chunks using tokenizer."""
    splits: List[str] = []
    input_ids = tokenizer.encode(text)
    start_idx = 0
    cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
    chunk_ids = input_ids[start_idx:cur_idx]
    while start_idx < len(input_ids):
        splits.append(tokenizer.decode(chunk_ids))
        if cur_idx == len(input_ids):
            break
        start_idx += tokenizer.tokens_per_chunk - tokenizer.chunk_overlap
        cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
        chunk_ids = input_ids[start_idx:cur_idx]
    return splits