Spaces:
Runtime error
Runtime error
File size: 23,237 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
from __future__ import annotations
import logging
import os
from abc import ABC, abstractmethod
from typing import (
TYPE_CHECKING,
Any,
Dict,
Generic,
List,
Optional,
Tuple,
Type,
TypeVar,
Union,
)
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain_core.callbacks.manager import CallbackManagerForChainRun
from langchain_core.prompts import (
BasePromptTemplate,
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain_experimental.pydantic_v1 import BaseModel, Extra, root_validator
from langchain_experimental.rl_chain.metrics import (
MetricsTrackerAverage,
MetricsTrackerRollingWindow,
)
from langchain_experimental.rl_chain.model_repository import ModelRepository
from langchain_experimental.rl_chain.vw_logger import VwLogger
if TYPE_CHECKING:
import vowpal_wabbit_next as vw
logger = logging.getLogger(__name__)
class _BasedOn:
def __init__(self, value: Any):
self.value = value
def __str__(self) -> str:
return str(self.value)
__repr__ = __str__
def BasedOn(anything: Any) -> _BasedOn:
"""Wrap a value to indicate that it should be based on."""
return _BasedOn(anything)
class _ToSelectFrom:
def __init__(self, value: Any):
self.value = value
def __str__(self) -> str:
return str(self.value)
__repr__ = __str__
def ToSelectFrom(anything: Any) -> _ToSelectFrom:
"""Wrap a value to indicate that it should be selected from."""
if not isinstance(anything, list):
raise ValueError("ToSelectFrom must be a list to select from")
return _ToSelectFrom(anything)
class _Embed:
def __init__(self, value: Any, keep: bool = False):
self.value = value
self.keep = keep
def __str__(self) -> str:
return str(self.value)
__repr__ = __str__
def Embed(anything: Any, keep: bool = False) -> Any:
"""Wrap a value to indicate that it should be embedded."""
if isinstance(anything, _ToSelectFrom):
return ToSelectFrom(Embed(anything.value, keep=keep))
elif isinstance(anything, _BasedOn):
return BasedOn(Embed(anything.value, keep=keep))
if isinstance(anything, list):
return [Embed(v, keep=keep) for v in anything]
elif isinstance(anything, dict):
return {k: Embed(v, keep=keep) for k, v in anything.items()}
elif isinstance(anything, _Embed):
return anything
return _Embed(anything, keep=keep)
def EmbedAndKeep(anything: Any) -> Any:
"""Wrap a value to indicate that it should be embedded and kept."""
return Embed(anything, keep=True)
# helper functions
def stringify_embedding(embedding: List) -> str:
"""Convert an embedding to a string."""
return " ".join([f"{i}:{e}" for i, e in enumerate(embedding)])
def parse_lines(parser: "vw.TextFormatParser", input_str: str) -> List["vw.Example"]:
"""Parse the input string into a list of examples."""
return [parser.parse_line(line) for line in input_str.split("\n")]
def get_based_on_and_to_select_from(inputs: Dict[str, Any]) -> Tuple[Dict, Dict]:
"""Get the BasedOn and ToSelectFrom from the inputs."""
to_select_from = {
k: inputs[k].value
for k in inputs.keys()
if isinstance(inputs[k], _ToSelectFrom)
}
if not to_select_from:
raise ValueError(
"No variables using 'ToSelectFrom' found in the inputs. Please include at least one variable containing a list to select from." # noqa: E501
)
based_on = {
k: inputs[k].value if isinstance(inputs[k].value, list) else [inputs[k].value]
for k in inputs.keys()
if isinstance(inputs[k], _BasedOn)
}
return based_on, to_select_from
def prepare_inputs_for_autoembed(inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Prepare the inputs for auto embedding.
Go over all the inputs and if something is either wrapped in _ToSelectFrom or _BasedOn, and if their inner values are not already _Embed,
then wrap them in EmbedAndKeep while retaining their _ToSelectFrom or _BasedOn status
""" # noqa: E501
next_inputs = inputs.copy()
for k, v in next_inputs.items():
if isinstance(v, _ToSelectFrom) or isinstance(v, _BasedOn):
if not isinstance(v.value, _Embed):
next_inputs[k].value = EmbedAndKeep(v.value)
return next_inputs
# end helper functions
class Selected(ABC):
"""Abstract class to represent the selected item."""
pass
TSelected = TypeVar("TSelected", bound=Selected)
class Event(Generic[TSelected], ABC):
"""Abstract class to represent an event."""
inputs: Dict[str, Any]
selected: Optional[TSelected]
def __init__(self, inputs: Dict[str, Any], selected: Optional[TSelected] = None):
self.inputs = inputs
self.selected = selected
TEvent = TypeVar("TEvent", bound=Event)
class Policy(Generic[TEvent], ABC):
"""Abstract class to represent a policy."""
def __init__(self, **kwargs: Any):
pass
@abstractmethod
def predict(self, event: TEvent) -> Any:
...
@abstractmethod
def learn(self, event: TEvent) -> None:
...
@abstractmethod
def log(self, event: TEvent) -> None:
...
def save(self) -> None:
pass
class VwPolicy(Policy):
"""Vowpal Wabbit policy."""
def __init__(
self,
model_repo: ModelRepository,
vw_cmd: List[str],
feature_embedder: Embedder,
vw_logger: VwLogger,
*args: Any,
**kwargs: Any,
):
super().__init__(*args, **kwargs)
self.model_repo = model_repo
self.workspace = self.model_repo.load(vw_cmd)
self.feature_embedder = feature_embedder
self.vw_logger = vw_logger
def predict(self, event: TEvent) -> Any:
import vowpal_wabbit_next as vw
text_parser = vw.TextFormatParser(self.workspace)
return self.workspace.predict_one(
parse_lines(text_parser, self.feature_embedder.format(event))
)
def learn(self, event: TEvent) -> None:
import vowpal_wabbit_next as vw
vw_ex = self.feature_embedder.format(event)
text_parser = vw.TextFormatParser(self.workspace)
multi_ex = parse_lines(text_parser, vw_ex)
self.workspace.learn_one(multi_ex)
def log(self, event: TEvent) -> None:
if self.vw_logger.logging_enabled():
vw_ex = self.feature_embedder.format(event)
self.vw_logger.log(vw_ex)
def save(self) -> None:
self.model_repo.save(self.workspace)
class Embedder(Generic[TEvent], ABC):
"""Abstract class to represent an embedder."""
def __init__(self, *args: Any, **kwargs: Any):
pass
@abstractmethod
def format(self, event: TEvent) -> str:
...
class SelectionScorer(Generic[TEvent], ABC, BaseModel):
"""Abstract class to grade the chosen selection or the response of the llm."""
@abstractmethod
def score_response(
self, inputs: Dict[str, Any], llm_response: str, event: TEvent
) -> float:
...
class AutoSelectionScorer(SelectionScorer[Event], BaseModel):
"""Auto selection scorer."""
llm_chain: LLMChain
prompt: Union[BasePromptTemplate, None] = None
scoring_criteria_template_str: Optional[str] = None
@staticmethod
def get_default_system_prompt() -> SystemMessagePromptTemplate:
return SystemMessagePromptTemplate.from_template(
"PLEASE RESPOND ONLY WITH A SINGLE FLOAT AND NO OTHER TEXT EXPLANATION\n \
You are a strict judge that is called on to rank a response based on \
given criteria. You must respond with your ranking by providing a \
single float within the range [0, 1], 0 being very bad \
response and 1 being very good response."
)
@staticmethod
def get_default_prompt() -> ChatPromptTemplate:
human_template = 'Given this based_on "{rl_chain_selected_based_on}" \
as the most important attribute, rank how good or bad this text is: \
"{rl_chain_selected}".'
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
default_system_prompt = AutoSelectionScorer.get_default_system_prompt()
chat_prompt = ChatPromptTemplate.from_messages(
[default_system_prompt, human_message_prompt]
)
return chat_prompt
@root_validator(pre=True)
def set_prompt_and_llm_chain(cls, values: Dict[str, Any]) -> Dict[str, Any]:
llm = values.get("llm")
prompt = values.get("prompt")
scoring_criteria_template_str = values.get("scoring_criteria_template_str")
if prompt is None and scoring_criteria_template_str is None:
prompt = AutoSelectionScorer.get_default_prompt()
elif prompt is None and scoring_criteria_template_str is not None:
human_message_prompt = HumanMessagePromptTemplate.from_template(
scoring_criteria_template_str
)
default_system_prompt = AutoSelectionScorer.get_default_system_prompt()
prompt = ChatPromptTemplate.from_messages(
[default_system_prompt, human_message_prompt]
)
values["prompt"] = prompt
values["llm_chain"] = LLMChain(llm=llm, prompt=prompt)
return values
def score_response(
self, inputs: Dict[str, Any], llm_response: str, event: Event
) -> float:
ranking = self.llm_chain.predict(llm_response=llm_response, **inputs)
ranking = ranking.strip()
try:
resp = float(ranking)
return resp
except Exception as e:
raise RuntimeError(
f"The auto selection scorer did not manage to score the response, there is always the option to try again or tweak the reward prompt. Error: {e}" # noqa: E501
)
class RLChain(Chain, Generic[TEvent]):
"""Chain that leverages the Vowpal Wabbit (VW) model as a learned policy
for reinforcement learning.
Attributes:
- llm_chain (Chain): Represents the underlying Language Model chain.
- prompt (BasePromptTemplate): The template for the base prompt.
- selection_scorer (Union[SelectionScorer, None]): Scorer for the selection. Can be set to None.
- policy (Optional[Policy]): The policy used by the chain to learn to populate a dynamic prompt.
- auto_embed (bool): Determines if embedding should be automatic. Default is False.
- metrics (Optional[Union[MetricsTrackerRollingWindow, MetricsTrackerAverage]]): Tracker for metrics, can be set to None.
Initialization Attributes:
- feature_embedder (Embedder): Embedder used for the `BasedOn` and `ToSelectFrom` inputs.
- model_save_dir (str, optional): Directory for saving the VW model. Default is the current directory.
- reset_model (bool): If set to True, the model starts training from scratch. Default is False.
- vw_cmd (List[str], optional): Command line arguments for the VW model.
- policy (Type[VwPolicy]): Policy used by the chain.
- vw_logs (Optional[Union[str, os.PathLike]]): Path for the VW logs.
- metrics_step (int): Step for the metrics tracker. Default is -1. If set without metrics_window_size, average metrics will be tracked, otherwise rolling window metrics will be tracked.
- metrics_window_size (int): Window size for the metrics tracker. Default is -1. If set, rolling window metrics will be tracked.
Notes:
The class initializes the VW model using the provided arguments. If `selection_scorer` is not provided, a warning is logged, indicating that no reinforcement learning will occur unless the `update_with_delayed_score` method is called.
""" # noqa: E501
class _NoOpPolicy(Policy):
"""Placeholder policy that does nothing"""
def predict(self, event: TEvent) -> Any:
return None
def learn(self, event: TEvent) -> None:
pass
def log(self, event: TEvent) -> None:
pass
llm_chain: Chain
output_key: str = "result" #: :meta private:
prompt: BasePromptTemplate
selection_scorer: Union[SelectionScorer, None]
active_policy: Policy = _NoOpPolicy()
auto_embed: bool = False
selection_scorer_activated: bool = True
selected_input_key = "rl_chain_selected"
selected_based_on_input_key = "rl_chain_selected_based_on"
metrics: Optional[Union[MetricsTrackerRollingWindow, MetricsTrackerAverage]] = None
def __init__(
self,
feature_embedder: Embedder,
model_save_dir: str = "./",
reset_model: bool = False,
vw_cmd: Optional[List[str]] = None,
policy: Type[Policy] = VwPolicy,
vw_logs: Optional[Union[str, os.PathLike]] = None,
metrics_step: int = -1,
metrics_window_size: int = -1,
*args: Any,
**kwargs: Any,
):
super().__init__(*args, **kwargs)
if self.selection_scorer is None:
logger.warning(
"No selection scorer provided, which means that no \
reinforcement learning will be done in the RL chain \
unless update_with_delayed_score is called."
)
if isinstance(self.active_policy, RLChain._NoOpPolicy):
self.active_policy = policy(
model_repo=ModelRepository(
model_save_dir, with_history=True, reset=reset_model
),
vw_cmd=vw_cmd or [],
feature_embedder=feature_embedder,
vw_logger=VwLogger(vw_logs),
)
if metrics_window_size > 0:
self.metrics = MetricsTrackerRollingWindow(
step=metrics_step, window_size=metrics_window_size
)
else:
self.metrics = MetricsTrackerAverage(step=metrics_step)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return []
@property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
"""
return [self.output_key]
def update_with_delayed_score(
self, score: float, chain_response: Dict[str, Any], force_score: bool = False
) -> None:
"""
Updates the learned policy with the score provided.
Will raise an error if selection_scorer is set, and force_score=True was not provided during the method call
""" # noqa: E501
if self._can_use_selection_scorer() and not force_score:
raise RuntimeError(
"The selection scorer is set, and force_score was not set to True. Please set force_score=True to use this function." # noqa: E501
)
if self.metrics:
self.metrics.on_feedback(score)
event: TEvent = chain_response["selection_metadata"]
self._call_after_scoring_before_learning(event=event, score=score)
self.active_policy.learn(event=event)
self.active_policy.log(event=event)
def deactivate_selection_scorer(self) -> None:
"""
Deactivates the selection scorer, meaning that the chain will no longer attempt to use the selection scorer to score responses.
""" # noqa: E501
self.selection_scorer_activated = False
def activate_selection_scorer(self) -> None:
"""
Activates the selection scorer, meaning that the chain will attempt to use the selection scorer to score responses.
""" # noqa: E501
self.selection_scorer_activated = True
def save_progress(self) -> None:
"""
This function should be called to save the state of the learned policy model.
"""
self.active_policy.save()
def _validate_inputs(self, inputs: Dict[str, Any]) -> None:
super()._validate_inputs(inputs)
if (
self.selected_input_key in inputs.keys()
or self.selected_based_on_input_key in inputs.keys()
):
raise ValueError(
f"The rl chain does not accept '{self.selected_input_key}' or '{self.selected_based_on_input_key}' as input keys, they are reserved for internal use during auto reward." # noqa: E501
)
def _can_use_selection_scorer(self) -> bool:
"""
Returns whether the chain can use the selection scorer to score responses or not.
""" # noqa: E501
return self.selection_scorer is not None and self.selection_scorer_activated
@abstractmethod
def _call_before_predict(self, inputs: Dict[str, Any]) -> TEvent:
...
@abstractmethod
def _call_after_predict_before_llm(
self, inputs: Dict[str, Any], event: TEvent, prediction: Any
) -> Tuple[Dict[str, Any], TEvent]:
...
@abstractmethod
def _call_after_llm_before_scoring(
self, llm_response: str, event: TEvent
) -> Tuple[Dict[str, Any], TEvent]:
...
@abstractmethod
def _call_after_scoring_before_learning(
self, event: TEvent, score: Optional[float]
) -> TEvent:
...
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
event: TEvent = self._call_before_predict(inputs=inputs)
prediction = self.active_policy.predict(event=event)
if self.metrics:
self.metrics.on_decision()
next_chain_inputs, event = self._call_after_predict_before_llm(
inputs=inputs, event=event, prediction=prediction
)
t = self.llm_chain.run(**next_chain_inputs, callbacks=_run_manager.get_child())
_run_manager.on_text(t, color="green", verbose=self.verbose)
t = t.strip()
if self.verbose:
_run_manager.on_text("\nCode: ", verbose=self.verbose)
output = t
_run_manager.on_text("\nAnswer: ", verbose=self.verbose)
_run_manager.on_text(output, color="yellow", verbose=self.verbose)
next_chain_inputs, event = self._call_after_llm_before_scoring(
llm_response=output, event=event
)
score = None
try:
if self._can_use_selection_scorer():
score = self.selection_scorer.score_response( # type: ignore
inputs=next_chain_inputs, llm_response=output, event=event
)
except Exception as e:
logger.info(
f"The selection scorer was not able to score, \
and the chain was not able to adjust to this response, error: {e}"
)
if self.metrics and score is not None:
self.metrics.on_feedback(score)
event = self._call_after_scoring_before_learning(score=score, event=event)
self.active_policy.learn(event=event)
self.active_policy.log(event=event)
return {self.output_key: {"response": output, "selection_metadata": event}}
@property
def _chain_type(self) -> str:
return "llm_personalizer_chain"
def is_stringtype_instance(item: Any) -> bool:
"""Check if an item is a string."""
return isinstance(item, str) or (
isinstance(item, _Embed) and isinstance(item.value, str)
)
def embed_string_type(
item: Union[str, _Embed], model: Any, namespace: Optional[str] = None
) -> Dict[str, Union[str, List[str]]]:
"""Embed a string or an _Embed object."""
keep_str = ""
if isinstance(item, _Embed):
encoded = stringify_embedding(model.encode(item.value))
if item.keep:
keep_str = item.value.replace(" ", "_") + " "
elif isinstance(item, str):
encoded = item.replace(" ", "_")
else:
raise ValueError(f"Unsupported type {type(item)} for embedding")
if namespace is None:
raise ValueError(
"The default namespace must be provided when embedding a string or _Embed object." # noqa: E501
)
return {namespace: keep_str + encoded}
def embed_dict_type(item: Dict, model: Any) -> Dict[str, Any]:
"""Embed a dictionary item."""
inner_dict: Dict = {}
for ns, embed_item in item.items():
if isinstance(embed_item, list):
inner_dict[ns] = []
for embed_list_item in embed_item:
embedded = embed_string_type(embed_list_item, model, ns)
inner_dict[ns].append(embedded[ns])
else:
inner_dict.update(embed_string_type(embed_item, model, ns))
return inner_dict
def embed_list_type(
item: list, model: Any, namespace: Optional[str] = None
) -> List[Dict[str, Union[str, List[str]]]]:
"""Embed a list item."""
ret_list: List = []
for embed_item in item:
if isinstance(embed_item, dict):
ret_list.append(embed_dict_type(embed_item, model))
elif isinstance(embed_item, list):
item_embedding = embed_list_type(embed_item, model, namespace)
# Get the first key from the first dictionary
first_key = next(iter(item_embedding[0]))
# Group the values under that key
grouping = {first_key: [item[first_key] for item in item_embedding]}
ret_list.append(grouping)
else:
ret_list.append(embed_string_type(embed_item, model, namespace))
return ret_list
def embed(
to_embed: Union[Union[str, _Embed], Dict, List[Union[str, _Embed]], List[Dict]],
model: Any,
namespace: Optional[str] = None,
) -> List[Dict[str, Union[str, List[str]]]]:
"""
Embed the actions or context using the SentenceTransformer model
(or a model that has an `encode` function).
Attributes:
to_embed: (Union[Union(str, _Embed(str)), Dict, List[Union(str, _Embed(str))], List[Dict]], required) The text to be embedded, either a string, a list of strings or a dictionary or a list of dictionaries.
namespace: (str, optional) The default namespace to use when dictionary or list of dictionaries not provided.
model: (Any, required) The model to use for embedding
Returns:
List[Dict[str, str]]: A list of dictionaries where each dictionary has the namespace as the key and the embedded string as the value
""" # noqa: E501
if (isinstance(to_embed, _Embed) and isinstance(to_embed.value, str)) or isinstance(
to_embed, str
):
return [embed_string_type(to_embed, model, namespace)]
elif isinstance(to_embed, dict):
return [embed_dict_type(to_embed, model)]
elif isinstance(to_embed, list):
return embed_list_type(to_embed, model, namespace)
else:
raise ValueError("Invalid input format for embedding")
|