File size: 7,688 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import json
from datetime import date, datetime
from decimal import Decimal
from hashlib import md5
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type, Union

from langchain_core.pydantic_v1 import BaseModel, Field, create_model
from langchain_core.tools import BaseTool, BaseToolkit, StructuredTool
from typing_extensions import Self

if TYPE_CHECKING:
    from databricks.sdk import WorkspaceClient
    from databricks.sdk.service.catalog import FunctionInfo

from langchain_community.tools.databricks._execution import execute_function


def _uc_type_to_pydantic_type(uc_type_json: Union[str, Dict[str, Any]]) -> Type:
    mapping = {
        "long": int,
        "binary": bytes,
        "boolean": bool,
        "date": date,
        "double": float,
        "float": float,
        "integer": int,
        "short": int,
        "string": str,
        "timestamp": datetime,
        "timestamp_ntz": datetime,
        "byte": int,
    }
    if isinstance(uc_type_json, str):
        if uc_type_json in mapping:
            return mapping[uc_type_json]
        else:
            if uc_type_json.startswith("decimal"):
                return Decimal
            elif uc_type_json == "void" or uc_type_json.startswith("interval"):
                raise TypeError(f"Type {uc_type_json} is not supported.")
            else:
                raise TypeError(
                    f"Unknown type {uc_type_json}. Try upgrading this package."
                )
    else:
        assert isinstance(uc_type_json, dict)
        tpe = uc_type_json["type"]
        if tpe == "array":
            element_type = _uc_type_to_pydantic_type(uc_type_json["elementType"])
            if uc_type_json["containsNull"]:
                element_type = Optional[element_type]  # type: ignore
            return List[element_type]  # type: ignore
        elif tpe == "map":
            key_type = uc_type_json["keyType"]
            assert key_type == "string", TypeError(
                f"Only support STRING key type for MAP but got {key_type}."
            )
            value_type = _uc_type_to_pydantic_type(uc_type_json["valueType"])
            if uc_type_json["valueContainsNull"]:
                value_type: Type = Optional[value_type]  # type: ignore
            return Dict[str, value_type]  # type: ignore
        elif tpe == "struct":
            fields = {}
            for field in uc_type_json["fields"]:
                field_type = _uc_type_to_pydantic_type(field["type"])
                if field.get("nullable"):
                    field_type = Optional[field_type]  # type: ignore
                comment = (
                    uc_type_json["metadata"].get("comment")
                    if "metadata" in uc_type_json
                    else None
                )
                fields[field["name"]] = (field_type, Field(..., description=comment))
            uc_type_json_str = json.dumps(uc_type_json, sort_keys=True)
            type_hash = md5(uc_type_json_str.encode()).hexdigest()[:8]
            return create_model(f"Struct_{type_hash}", **fields)  # type: ignore
        else:
            raise TypeError(f"Unknown type {uc_type_json}. Try upgrading this package.")


def _generate_args_schema(function: "FunctionInfo") -> Type[BaseModel]:
    if function.input_params is None:
        return BaseModel
    params = function.input_params.parameters
    assert params is not None
    fields = {}
    for p in params:
        assert p.type_json is not None
        type_json = json.loads(p.type_json)["type"]
        pydantic_type = _uc_type_to_pydantic_type(type_json)
        description = p.comment
        default: Any = ...
        if p.parameter_default:
            pydantic_type = Optional[pydantic_type]  # type: ignore
            default = None
            # TODO: Convert default value string to the correct type.
            # We might need to use statement execution API
            # to get the JSON representation of the value.
            default_description = f"(Default: {p.parameter_default})"
            if description:
                description += f" {default_description}"
            else:
                description = default_description
        fields[p.name] = (
            pydantic_type,
            Field(default=default, description=description),
        )
    return create_model(
        f"{function.catalog_name}__{function.schema_name}__{function.name}__params",
        **fields,  # type: ignore
    )


def _get_tool_name(function: "FunctionInfo") -> str:
    tool_name = f"{function.catalog_name}__{function.schema_name}__{function.name}"[
        -64:
    ]
    return tool_name


def _get_default_workspace_client() -> "WorkspaceClient":
    try:
        from databricks.sdk import WorkspaceClient
    except ImportError as e:
        raise ImportError(
            "Could not import databricks-sdk python package. "
            "Please install it with `pip install databricks-sdk`."
        ) from e
    return WorkspaceClient()


class UCFunctionToolkit(BaseToolkit):
    warehouse_id: str = Field(
        description="The ID of a Databricks SQL Warehouse to execute functions."
    )

    workspace_client: "WorkspaceClient" = Field(
        default_factory=_get_default_workspace_client,
        description="Databricks workspace client.",
    )

    tools: Dict[str, BaseTool] = Field(default_factory=dict)

    class Config:
        arbitrary_types_allowed = True

    def include(self, *function_names: str, **kwargs: Any) -> Self:
        """
        Includes UC functions to the toolkit.

        Args:
            functions: A list of UC function names in the format
                "catalog_name.schema_name.function_name" or
                "catalog_name.schema_name.*".
                If the function name ends with ".*",
                all functions in the schema will be added.
            kwargs: Extra arguments to pass to StructuredTool, e.g., `return_direct`.
        """
        for name in function_names:
            if name.endswith(".*"):
                catalog_name, schema_name = name[:-2].split(".")
                # TODO: handle pagination, warn and truncate if too many
                functions = self.workspace_client.functions.list(
                    catalog_name=catalog_name, schema_name=schema_name
                )
                for f in functions:
                    assert f.full_name is not None
                    self.include(f.full_name, **kwargs)
            else:
                if name not in self.tools:
                    self.tools[name] = self._make_tool(name, **kwargs)
        return self

    def _make_tool(self, function_name: str, **kwargs: Any) -> BaseTool:
        function = self.workspace_client.functions.get(function_name)
        name = _get_tool_name(function)
        description = function.comment or ""
        args_schema = _generate_args_schema(function)

        def func(*args: Any, **kwargs: Any) -> str:
            # TODO: We expect all named args and ignore args.
            # Non-empty args show up when the function has no parameters.
            args_json = json.loads(json.dumps(kwargs, default=str))
            result = execute_function(
                ws=self.workspace_client,
                warehouse_id=self.warehouse_id,
                function=function,
                parameters=args_json,
            )
            return result.to_json()

        return StructuredTool(
            name=name,
            description=description,
            args_schema=args_schema,
            func=func,
            **kwargs,
        )

    def get_tools(self) -> List[BaseTool]:
        return list(self.tools.values())