Spaces:
Runtime error
Runtime error
File size: 9,340 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
from __future__ import annotations
import importlib
import os
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.pydantic_v1 import Extra, SecretStr, root_validator
from langchain_core.retrievers import BaseRetriever
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
class NeuralDBRetriever(BaseRetriever):
"""Document retriever that uses ThirdAI's NeuralDB."""
thirdai_key: SecretStr
"""ThirdAI API Key"""
db: Any = None #: :meta private:
"""NeuralDB instance"""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
underscore_attrs_are_private = True
@staticmethod
def _verify_thirdai_library(thirdai_key: Optional[str] = None) -> None:
try:
from thirdai import licensing
importlib.util.find_spec("thirdai.neural_db")
licensing.activate(thirdai_key or os.getenv("THIRDAI_KEY"))
except ImportError:
raise ImportError(
"Could not import thirdai python package and neuraldb dependencies. "
"Please install it with `pip install thirdai[neural_db]`."
)
@classmethod
def from_scratch(
cls,
thirdai_key: Optional[str] = None,
**model_kwargs: dict,
) -> NeuralDBRetriever:
"""
Create a NeuralDBRetriever from scratch.
To use, set the ``THIRDAI_KEY`` environment variable with your ThirdAI
API key, or pass ``thirdai_key`` as a named parameter.
Example:
.. code-block:: python
from langchain_community.retrievers import NeuralDBRetriever
retriever = NeuralDBRetriever.from_scratch(
thirdai_key="your-thirdai-key",
)
retriever.insert([
"/path/to/doc.pdf",
"/path/to/doc.docx",
"/path/to/doc.csv",
])
documents = retriever.invoke("AI-driven music therapy")
"""
NeuralDBRetriever._verify_thirdai_library(thirdai_key)
from thirdai import neural_db as ndb
return cls(thirdai_key=thirdai_key, db=ndb.NeuralDB(**model_kwargs)) # type: ignore[arg-type]
@classmethod
def from_checkpoint(
cls,
checkpoint: Union[str, Path],
thirdai_key: Optional[str] = None,
) -> NeuralDBRetriever:
"""
Create a NeuralDBRetriever with a base model from a saved checkpoint
To use, set the ``THIRDAI_KEY`` environment variable with your ThirdAI
API key, or pass ``thirdai_key`` as a named parameter.
Example:
.. code-block:: python
from langchain_community.retrievers import NeuralDBRetriever
retriever = NeuralDBRetriever.from_checkpoint(
checkpoint="/path/to/checkpoint.ndb",
thirdai_key="your-thirdai-key",
)
retriever.insert([
"/path/to/doc.pdf",
"/path/to/doc.docx",
"/path/to/doc.csv",
])
documents = retriever.invoke("AI-driven music therapy")
"""
NeuralDBRetriever._verify_thirdai_library(thirdai_key)
from thirdai import neural_db as ndb
return cls(thirdai_key=thirdai_key, db=ndb.NeuralDB.from_checkpoint(checkpoint)) # type: ignore[arg-type]
@root_validator()
def validate_environments(cls, values: Dict) -> Dict:
"""Validate ThirdAI environment variables."""
values["thirdai_key"] = convert_to_secret_str(
get_from_dict_or_env(
values,
"thirdai_key",
"THIRDAI_KEY",
)
)
return values
def insert(
self,
sources: List[Any],
train: bool = True,
fast_mode: bool = True,
**kwargs: dict,
) -> None:
"""Inserts files / document sources into the retriever.
Args:
train: When True this means that the underlying model in the
NeuralDB will undergo unsupervised pretraining on the inserted files.
Defaults to True.
fast_mode: Much faster insertion with a slight drop in performance.
Defaults to True.
"""
sources = self._preprocess_sources(sources)
self.db.insert(
sources=sources,
train=train,
fast_approximation=fast_mode,
**kwargs,
)
def _preprocess_sources(self, sources: list) -> list:
"""Checks if the provided sources are string paths. If they are, convert
to NeuralDB document objects.
Args:
sources: list of either string paths to PDF, DOCX or CSV files, or
NeuralDB document objects.
"""
from thirdai import neural_db as ndb
if not sources:
return sources
preprocessed_sources = []
for doc in sources:
if not isinstance(doc, str):
preprocessed_sources.append(doc)
else:
if doc.lower().endswith(".pdf"):
preprocessed_sources.append(ndb.PDF(doc))
elif doc.lower().endswith(".docx"):
preprocessed_sources.append(ndb.DOCX(doc))
elif doc.lower().endswith(".csv"):
preprocessed_sources.append(ndb.CSV(doc))
else:
raise RuntimeError(
f"Could not automatically load {doc}. Only files "
"with .pdf, .docx, or .csv extensions can be loaded "
"automatically. For other formats, please use the "
"appropriate document object from the ThirdAI library."
)
return preprocessed_sources
def upvote(self, query: str, document_id: int) -> None:
"""The retriever upweights the score of a document for a specific query.
This is useful for fine-tuning the retriever to user behavior.
Args:
query: text to associate with `document_id`
document_id: id of the document to associate query with.
"""
self.db.text_to_result(query, document_id)
def upvote_batch(self, query_id_pairs: List[Tuple[str, int]]) -> None:
"""Given a batch of (query, document id) pairs, the retriever upweights
the scores of the document for the corresponding queries.
This is useful for fine-tuning the retriever to user behavior.
Args:
query_id_pairs: list of (query, document id) pairs. For each pair in
this list, the model will upweight the document id for the query.
"""
self.db.text_to_result_batch(query_id_pairs)
def associate(self, source: str, target: str) -> None:
"""The retriever associates a source phrase with a target phrase.
When the retriever sees the source phrase, it will also consider results
that are relevant to the target phrase.
Args:
source: text to associate to `target`.
target: text to associate `source` to.
"""
self.db.associate(source, target)
def associate_batch(self, text_pairs: List[Tuple[str, str]]) -> None:
"""Given a batch of (source, target) pairs, the retriever associates
each source phrase with the corresponding target phrase.
Args:
text_pairs: list of (source, target) text pairs. For each pair in
this list, the source will be associated with the target.
"""
self.db.associate_batch(text_pairs)
def _get_relevant_documents(
self, query: str, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any
) -> List[Document]:
"""Retrieve {top_k} contexts with your retriever for a given query
Args:
query: Query to submit to the model
top_k: The max number of context results to retrieve. Defaults to 10.
"""
try:
if "top_k" not in kwargs:
kwargs["top_k"] = 10
references = self.db.search(query=query, **kwargs)
return [
Document(
page_content=ref.text,
metadata={
"id": ref.id,
"upvote_ids": ref.upvote_ids,
"source": ref.source,
"metadata": ref.metadata,
"score": ref.score,
"context": ref.context(1),
},
)
for ref in references
]
except Exception as e:
raise ValueError(f"Error while retrieving documents: {e}") from e
def save(self, path: str) -> None:
"""Saves a NeuralDB instance to disk. Can be loaded into memory by
calling NeuralDB.from_checkpoint(path)
Args:
path: path on disk to save the NeuralDB instance to.
"""
self.db.save(path)
|