File size: 14,617 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import json
import logging
from typing import Any, AsyncIterator, Dict, Iterator, List, Mapping, Optional

from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from langchain_core.pydantic_v1 import Extra, Field, root_validator
from langchain_core.utils import get_from_dict_or_env, get_pydantic_field_names

logger = logging.getLogger(__name__)

VALID_TASKS = (
    "text2text-generation",
    "text-generation",
    "summarization",
    "conversational",
)


@deprecated(
    since="0.0.37",
    removal="0.3",
    alternative_import="langchain_huggingface.HuggingFaceEndpoint",
)
class HuggingFaceEndpoint(LLM):
    """
    HuggingFace Endpoint.

    To use this class, you should have installed the ``huggingface_hub`` package, and
    the environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token,
    or given as a named parameter to the constructor.

    Example:
        .. code-block:: python

            # Basic Example (no streaming)
            llm = HuggingFaceEndpoint(
                endpoint_url="http://localhost:8010/",
                max_new_tokens=512,
                top_k=10,
                top_p=0.95,
                typical_p=0.95,
                temperature=0.01,
                repetition_penalty=1.03,
                huggingfacehub_api_token="my-api-key"
            )
            print(llm.invoke("What is Deep Learning?"))

            # Streaming response example
            from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

            callbacks = [StreamingStdOutCallbackHandler()]
            llm = HuggingFaceEndpoint(
                endpoint_url="http://localhost:8010/",
                max_new_tokens=512,
                top_k=10,
                top_p=0.95,
                typical_p=0.95,
                temperature=0.01,
                repetition_penalty=1.03,
                callbacks=callbacks,
                streaming=True,
                huggingfacehub_api_token="my-api-key"
            )
            print(llm.invoke("What is Deep Learning?"))

    """  # noqa: E501

    endpoint_url: Optional[str] = None
    """Endpoint URL to use."""
    repo_id: Optional[str] = None
    """Repo to use."""
    huggingfacehub_api_token: Optional[str] = None
    max_new_tokens: int = 512
    """Maximum number of generated tokens"""
    top_k: Optional[int] = None
    """The number of highest probability vocabulary tokens to keep for
    top-k-filtering."""
    top_p: Optional[float] = 0.95
    """If set to < 1, only the smallest set of most probable tokens with probabilities
    that add up to `top_p` or higher are kept for generation."""
    typical_p: Optional[float] = 0.95
    """Typical Decoding mass. See [Typical Decoding for Natural Language
    Generation](https://arxiv.org/abs/2202.00666) for more information."""
    temperature: Optional[float] = 0.8
    """The value used to module the logits distribution."""
    repetition_penalty: Optional[float] = None
    """The parameter for repetition penalty. 1.0 means no penalty.
    See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details."""
    return_full_text: bool = False
    """Whether to prepend the prompt to the generated text"""
    truncate: Optional[int] = None
    """Truncate inputs tokens to the given size"""
    stop_sequences: List[str] = Field(default_factory=list)
    """Stop generating tokens if a member of `stop_sequences` is generated"""
    seed: Optional[int] = None
    """Random sampling seed"""
    inference_server_url: str = ""
    """text-generation-inference instance base url"""
    timeout: int = 120
    """Timeout in seconds"""
    streaming: bool = False
    """Whether to generate a stream of tokens asynchronously"""
    do_sample: bool = False
    """Activate logits sampling"""
    watermark: bool = False
    """Watermarking with [A Watermark for Large Language Models]
    (https://arxiv.org/abs/2301.10226)"""
    server_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Holds any text-generation-inference server parameters not explicitly specified"""
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Holds any model parameters valid for `call` not explicitly specified"""
    model: str
    client: Any
    async_client: Any
    task: Optional[str] = None
    """Task to call the model with.
    Should be a task that returns `generated_text` or `summary_text`."""

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid

    @root_validator(pre=True)
    def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Build extra kwargs from additional params that were passed in."""
        all_required_field_names = get_pydantic_field_names(cls)
        extra = values.get("model_kwargs", {})
        for field_name in list(values):
            if field_name in extra:
                raise ValueError(f"Found {field_name} supplied twice.")
            if field_name not in all_required_field_names:
                logger.warning(
                    f"""WARNING! {field_name} is not default parameter.
                    {field_name} was transferred to model_kwargs.
                    Please make sure that {field_name} is what you intended."""
                )
                extra[field_name] = values.pop(field_name)

        invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
        if invalid_model_kwargs:
            raise ValueError(
                f"Parameters {invalid_model_kwargs} should be specified explicitly. "
                f"Instead they were passed in as part of `model_kwargs` parameter."
            )

        values["model_kwargs"] = extra
        if "endpoint_url" not in values and "repo_id" not in values:
            raise ValueError(
                "Please specify an `endpoint_url` or `repo_id` for the model."
            )
        if "endpoint_url" in values and "repo_id" in values:
            raise ValueError(
                "Please specify either an `endpoint_url` OR a `repo_id`, not both."
            )
        values["model"] = values.get("endpoint_url") or values.get("repo_id")
        return values

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that package is installed and that the API token is valid."""
        try:
            from huggingface_hub import login

        except ImportError:
            raise ImportError(
                "Could not import huggingface_hub python package. "
                "Please install it with `pip install huggingface_hub`."
            )
        try:
            huggingfacehub_api_token = get_from_dict_or_env(
                values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
            )
            login(token=huggingfacehub_api_token)
        except Exception as e:
            raise ValueError(
                "Could not authenticate with huggingface_hub. "
                "Please check your API token."
            ) from e

        from huggingface_hub import AsyncInferenceClient, InferenceClient

        values["client"] = InferenceClient(
            model=values["model"],
            timeout=values["timeout"],
            token=huggingfacehub_api_token,
            **values["server_kwargs"],
        )
        values["async_client"] = AsyncInferenceClient(
            model=values["model"],
            timeout=values["timeout"],
            token=huggingfacehub_api_token,
            **values["server_kwargs"],
        )

        return values

    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling text generation inference API."""
        return {
            "max_new_tokens": self.max_new_tokens,
            "top_k": self.top_k,
            "top_p": self.top_p,
            "typical_p": self.typical_p,
            "temperature": self.temperature,
            "repetition_penalty": self.repetition_penalty,
            "return_full_text": self.return_full_text,
            "truncate": self.truncate,
            "stop_sequences": self.stop_sequences,
            "seed": self.seed,
            "do_sample": self.do_sample,
            "watermark": self.watermark,
            **self.model_kwargs,
        }

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        _model_kwargs = self.model_kwargs or {}
        return {
            **{"endpoint_url": self.endpoint_url, "task": self.task},
            **{"model_kwargs": _model_kwargs},
        }

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "huggingface_endpoint"

    def _invocation_params(
        self, runtime_stop: Optional[List[str]], **kwargs: Any
    ) -> Dict[str, Any]:
        params = {**self._default_params, **kwargs}
        params["stop_sequences"] = params["stop_sequences"] + (runtime_stop or [])
        return params

    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        """Call out to HuggingFace Hub's inference endpoint."""
        invocation_params = self._invocation_params(stop, **kwargs)
        if self.streaming:
            completion = ""
            for chunk in self._stream(prompt, stop, run_manager, **invocation_params):
                completion += chunk.text
            return completion
        else:
            invocation_params["stop"] = invocation_params[
                "stop_sequences"
            ]  # porting 'stop_sequences' into the 'stop' argument
            response = self.client.post(
                json={"inputs": prompt, "parameters": invocation_params},
                stream=False,
                task=self.task,
            )
            try:
                response_text = json.loads(response.decode())[0]["generated_text"]
            except KeyError:
                response_text = json.loads(response.decode())["generated_text"]

            # Maybe the generation has stopped at one of the stop sequences:
            # then we remove this stop sequence from the end of the generated text
            for stop_seq in invocation_params["stop_sequences"]:
                if response_text[-len(stop_seq) :] == stop_seq:
                    response_text = response_text[: -len(stop_seq)]
            return response_text

    async def _acall(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        invocation_params = self._invocation_params(stop, **kwargs)
        if self.streaming:
            completion = ""
            async for chunk in self._astream(
                prompt, stop, run_manager, **invocation_params
            ):
                completion += chunk.text
            return completion
        else:
            invocation_params["stop"] = invocation_params["stop_sequences"]
            response = await self.async_client.post(
                json={"inputs": prompt, "parameters": invocation_params},
                stream=False,
                task=self.task,
            )
            try:
                response_text = json.loads(response.decode())[0]["generated_text"]
            except KeyError:
                response_text = json.loads(response.decode())["generated_text"]

            # Maybe the generation has stopped at one of the stop sequences:
            # then remove this stop sequence from the end of the generated text
            for stop_seq in invocation_params["stop_sequences"]:
                if response_text[-len(stop_seq) :] == stop_seq:
                    response_text = response_text[: -len(stop_seq)]
            return response_text

    def _stream(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[GenerationChunk]:
        invocation_params = self._invocation_params(stop, **kwargs)

        for response in self.client.text_generation(
            prompt, **invocation_params, stream=True
        ):
            # identify stop sequence in generated text, if any
            stop_seq_found: Optional[str] = None
            for stop_seq in invocation_params["stop_sequences"]:
                if stop_seq in response:
                    stop_seq_found = stop_seq

            # identify text to yield
            text: Optional[str] = None
            if stop_seq_found:
                text = response[: response.index(stop_seq_found)]
            else:
                text = response

            # yield text, if any
            if text:
                chunk = GenerationChunk(text=text)

                if run_manager:
                    run_manager.on_llm_new_token(chunk.text)
                yield chunk

            # break if stop sequence found
            if stop_seq_found:
                break

    async def _astream(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> AsyncIterator[GenerationChunk]:
        invocation_params = self._invocation_params(stop, **kwargs)
        async for response in await self.async_client.text_generation(
            prompt, **invocation_params, stream=True
        ):
            # identify stop sequence in generated text, if any
            stop_seq_found: Optional[str] = None
            for stop_seq in invocation_params["stop_sequences"]:
                if stop_seq in response:
                    stop_seq_found = stop_seq

            # identify text to yield
            text: Optional[str] = None
            if stop_seq_found:
                text = response[: response.index(stop_seq_found)]
            else:
                text = response

            # yield text, if any
            if text:
                chunk = GenerationChunk(text=text)

                if run_manager:
                    await run_manager.on_llm_new_token(chunk.text)
                yield chunk

            # break if stop sequence found
            if stop_seq_found:
                break