File size: 3,950 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import logging
from typing import Any, List, Mapping, Optional

import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM

from langchain_community.llms.utils import enforce_stop_tokens

logger = logging.getLogger(__name__)


class ChatGLM(LLM):
    """ChatGLM LLM service.

    Example:
        .. code-block:: python

            from langchain_community.llms import ChatGLM
            endpoint_url = (
                "http://127.0.0.1:8000"
            )
            ChatGLM_llm = ChatGLM(
                endpoint_url=endpoint_url
            )
    """

    endpoint_url: str = "http://127.0.0.1:8000/"
    """Endpoint URL to use."""
    model_kwargs: Optional[dict] = None
    """Keyword arguments to pass to the model."""
    max_token: int = 20000
    """Max token allowed to pass to the model."""
    temperature: float = 0.1
    """LLM model temperature from 0 to 10."""
    history: List[List] = []
    """History of the conversation"""
    top_p: float = 0.7
    """Top P for nucleus sampling from 0 to 1"""
    with_history: bool = False
    """Whether to use history or not"""

    @property
    def _llm_type(self) -> str:
        return "chat_glm"

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        _model_kwargs = self.model_kwargs or {}
        return {
            **{"endpoint_url": self.endpoint_url},
            **{"model_kwargs": _model_kwargs},
        }

    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        """Call out to a ChatGLM LLM inference endpoint.

        Args:
            prompt: The prompt to pass into the model.
            stop: Optional list of stop words to use when generating.

        Returns:
            The string generated by the model.

        Example:
            .. code-block:: python

                response = chatglm_llm.invoke("Who are you?")
        """

        _model_kwargs = self.model_kwargs or {}

        # HTTP headers for authorization
        headers = {"Content-Type": "application/json"}

        payload = {
            "prompt": prompt,
            "temperature": self.temperature,
            "history": self.history,
            "max_length": self.max_token,
            "top_p": self.top_p,
        }
        payload.update(_model_kwargs)
        payload.update(kwargs)

        logger.debug(f"ChatGLM payload: {payload}")

        # call api
        try:
            response = requests.post(self.endpoint_url, headers=headers, json=payload)
        except requests.exceptions.RequestException as e:
            raise ValueError(f"Error raised by inference endpoint: {e}")

        logger.debug(f"ChatGLM response: {response}")

        if response.status_code != 200:
            raise ValueError(f"Failed with response: {response}")

        try:
            parsed_response = response.json()

            # Check if response content does exists
            if isinstance(parsed_response, dict):
                content_keys = "response"
                if content_keys in parsed_response:
                    text = parsed_response[content_keys]
                else:
                    raise ValueError(f"No content in response : {parsed_response}")
            else:
                raise ValueError(f"Unexpected response type: {parsed_response}")

        except requests.exceptions.JSONDecodeError as e:
            raise ValueError(
                f"Error raised during decoding response from inference endpoint: {e}."
                f"\nResponse: {response.text}"
            )

        if stop is not None:
            text = enforce_stop_tokens(text, stop)
        if self.with_history:
            self.history = parsed_response["history"]
        return text