File size: 9,113 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import base64
import json
import logging
import subprocess
import textwrap
import time
from typing import Any, Dict, List, Mapping, Optional

import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.pydantic_v1 import Extra, Field, root_validator
from langchain_core.utils import get_from_dict_or_env

logger = logging.getLogger(__name__)

DEFAULT_NUM_TRIES = 10
DEFAULT_SLEEP_TIME = 4


class Beam(LLM):
    """Beam API for gpt2 large language model.

    To use, you should have the ``beam-sdk`` python package installed,
    and the environment variable ``BEAM_CLIENT_ID`` set with your client id
    and ``BEAM_CLIENT_SECRET`` set with your client secret. Information on how
    to get this is available here: https://docs.beam.cloud/account/api-keys.

    The wrapper can then be called as follows, where the name, cpu, memory, gpu,
    python version, and python packages can be updated accordingly. Once deployed,
    the instance can be called.

    Example:
        .. code-block:: python

            llm = Beam(model_name="gpt2",
                name="langchain-gpt2",
                cpu=8,
                memory="32Gi",
                gpu="A10G",
                python_version="python3.8",
                python_packages=[
                    "diffusers[torch]>=0.10",
                    "transformers",
                    "torch",
                    "pillow",
                    "accelerate",
                    "safetensors",
                    "xformers",],
                max_length=50)
            llm._deploy()
            call_result = llm._call(input)

    """

    model_name: str = ""
    name: str = ""
    cpu: str = ""
    memory: str = ""
    gpu: str = ""
    python_version: str = ""
    python_packages: List[str] = []
    max_length: str = ""
    url: str = ""
    """model endpoint to use"""

    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Holds any model parameters valid for `create` call not
    explicitly specified."""

    beam_client_id: str = ""
    beam_client_secret: str = ""
    app_id: Optional[str] = None

    class Config:
        """Configuration for this pydantic config."""

        extra = Extra.forbid

    @root_validator(pre=True)
    def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Build extra kwargs from additional params that were passed in."""
        all_required_field_names = {field.alias for field in cls.__fields__.values()}

        extra = values.get("model_kwargs", {})
        for field_name in list(values):
            if field_name not in all_required_field_names:
                if field_name in extra:
                    raise ValueError(f"Found {field_name} supplied twice.")
                logger.warning(
                    f"""{field_name} was transferred to model_kwargs.
                    Please confirm that {field_name} is what you intended."""
                )
                extra[field_name] = values.pop(field_name)
        values["model_kwargs"] = extra
        return values

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        beam_client_id = get_from_dict_or_env(
            values, "beam_client_id", "BEAM_CLIENT_ID"
        )
        beam_client_secret = get_from_dict_or_env(
            values, "beam_client_secret", "BEAM_CLIENT_SECRET"
        )
        values["beam_client_id"] = beam_client_id
        values["beam_client_secret"] = beam_client_secret
        return values

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        return {
            "model_name": self.model_name,
            "name": self.name,
            "cpu": self.cpu,
            "memory": self.memory,
            "gpu": self.gpu,
            "python_version": self.python_version,
            "python_packages": self.python_packages,
            "max_length": self.max_length,
            "model_kwargs": self.model_kwargs,
        }

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "beam"

    def app_creation(self) -> None:
        """Creates a Python file which will contain your Beam app definition."""
        script = textwrap.dedent(
            """\
        import beam

        # The environment your code will run on
        app = beam.App(
            name="{name}",
            cpu={cpu},
            memory="{memory}",
            gpu="{gpu}",
            python_version="{python_version}",
            python_packages={python_packages},
        )

        app.Trigger.RestAPI(
            inputs={{"prompt": beam.Types.String(), "max_length": beam.Types.String()}},
            outputs={{"text": beam.Types.String()}},
            handler="run.py:beam_langchain",
        )

        """
        )

        script_name = "app.py"
        with open(script_name, "w") as file:
            file.write(
                script.format(
                    name=self.name,
                    cpu=self.cpu,
                    memory=self.memory,
                    gpu=self.gpu,
                    python_version=self.python_version,
                    python_packages=self.python_packages,
                )
            )

    def run_creation(self) -> None:
        """Creates a Python file which will be deployed on beam."""
        script = textwrap.dedent(
            """
        import os
        import transformers
        from transformers import GPT2LMHeadModel, GPT2Tokenizer

        model_name = "{model_name}"

        def beam_langchain(**inputs):
            prompt = inputs["prompt"]
            length = inputs["max_length"]

            tokenizer = GPT2Tokenizer.from_pretrained(model_name)
            model = GPT2LMHeadModel.from_pretrained(model_name)
            encodedPrompt = tokenizer.encode(prompt, return_tensors='pt')
            outputs = model.generate(encodedPrompt, max_length=int(length),
              do_sample=True, pad_token_id=tokenizer.eos_token_id)
            output = tokenizer.decode(outputs[0], skip_special_tokens=True)

            print(output)  # noqa: T201
            return {{"text": output}}

        """
        )

        script_name = "run.py"
        with open(script_name, "w") as file:
            file.write(script.format(model_name=self.model_name))

    def _deploy(self) -> str:
        """Call to Beam."""
        try:
            import beam  # type: ignore

            if beam.__path__ == "":
                raise ImportError
        except ImportError:
            raise ImportError(
                "Could not import beam python package. "
                "Please install it with `curl "
                "https://raw.githubusercontent.com/slai-labs"
                "/get-beam/main/get-beam.sh -sSfL | sh`."
            )
        self.app_creation()
        self.run_creation()

        process = subprocess.run(
            "beam deploy app.py", shell=True, capture_output=True, text=True
        )

        if process.returncode == 0:
            output = process.stdout
            logger.info(output)
            lines = output.split("\n")

            for line in lines:
                if line.startswith(" i  Send requests to: https://apps.beam.cloud/"):
                    self.app_id = line.split("/")[-1]
                    self.url = line.split(":")[1].strip()
                    return self.app_id

            raise ValueError(
                f"""Failed to retrieve the appID from the deployment output.
                Deployment output: {output}"""
            )
        else:
            raise ValueError(f"Deployment failed. Error: {process.stderr}")

    @property
    def authorization(self) -> str:
        if self.beam_client_id:
            credential_str = self.beam_client_id + ":" + self.beam_client_secret
        else:
            credential_str = self.beam_client_secret
        return base64.b64encode(credential_str.encode()).decode()

    def _call(
        self,
        prompt: str,
        stop: Optional[list] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        """Call to Beam."""
        url = "https://apps.beam.cloud/" + self.app_id if self.app_id else self.url
        payload = {"prompt": prompt, "max_length": self.max_length}
        payload.update(kwargs)
        headers = {
            "Accept": "*/*",
            "Accept-Encoding": "gzip, deflate",
            "Authorization": "Basic " + self.authorization,
            "Connection": "keep-alive",
            "Content-Type": "application/json",
        }

        for _ in range(DEFAULT_NUM_TRIES):
            request = requests.post(url, headers=headers, data=json.dumps(payload))
            if request.status_code == 200:
                return request.json()["text"]
            time.sleep(DEFAULT_SLEEP_TIME)
        logger.warning("Unable to successfully call model.")
        return ""