Spaces:
Runtime error
Runtime error
File size: 4,826 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
from __future__ import annotations
import logging
from typing import Any, Callable, Dict, List, Optional
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from tenacity import (
before_sleep_log,
retry,
stop_after_attempt,
wait_exponential,
)
logger = logging.getLogger(__name__)
def _create_retry_decorator() -> Callable[[Any], Any]:
"""Returns a tenacity retry decorator."""
multiplier = 1
min_seconds = 1
max_seconds = 4
max_retries = 6
return retry(
reraise=True,
stop=stop_after_attempt(max_retries),
wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def embed_with_retry(embeddings: MiniMaxEmbeddings, *args: Any, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator()
@retry_decorator
def _embed_with_retry(*args: Any, **kwargs: Any) -> Any:
return embeddings.embed(*args, **kwargs)
return _embed_with_retry(*args, **kwargs)
class MiniMaxEmbeddings(BaseModel, Embeddings):
"""MiniMax's embedding service.
To use, you should have the environment variable ``MINIMAX_GROUP_ID`` and
``MINIMAX_API_KEY`` set with your API token, or pass it as a named parameter to
the constructor.
Example:
.. code-block:: python
from langchain_community.embeddings import MiniMaxEmbeddings
embeddings = MiniMaxEmbeddings()
query_text = "This is a test query."
query_result = embeddings.embed_query(query_text)
document_text = "This is a test document."
document_result = embeddings.embed_documents([document_text])
"""
endpoint_url: str = "https://api.minimax.chat/v1/embeddings"
"""Endpoint URL to use."""
model: str = "embo-01"
"""Embeddings model name to use."""
embed_type_db: str = "db"
"""For embed_documents"""
embed_type_query: str = "query"
"""For embed_query"""
minimax_group_id: Optional[str] = None
"""Group ID for MiniMax API."""
minimax_api_key: Optional[SecretStr] = None
"""API Key for MiniMax API."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that group id and api key exists in environment."""
minimax_group_id = get_from_dict_or_env(
values, "minimax_group_id", "MINIMAX_GROUP_ID"
)
minimax_api_key = convert_to_secret_str(
get_from_dict_or_env(values, "minimax_api_key", "MINIMAX_API_KEY")
)
values["minimax_group_id"] = minimax_group_id
values["minimax_api_key"] = minimax_api_key
return values
def embed(
self,
texts: List[str],
embed_type: str,
) -> List[List[float]]:
payload = {
"model": self.model,
"type": embed_type,
"texts": texts,
}
# HTTP headers for authorization
headers = {
"Authorization": f"Bearer {self.minimax_api_key.get_secret_value()}", # type: ignore[union-attr]
"Content-Type": "application/json",
}
params = {
"GroupId": self.minimax_group_id,
}
# send request
response = requests.post(
self.endpoint_url, params=params, headers=headers, json=payload
)
parsed_response = response.json()
# check for errors
if parsed_response["base_resp"]["status_code"] != 0:
raise ValueError(
f"MiniMax API returned an error: {parsed_response['base_resp']}"
)
embeddings = parsed_response["vectors"]
return embeddings
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed documents using a MiniMax embedding endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings = embed_with_retry(self, texts=texts, embed_type=self.embed_type_db)
return embeddings
def embed_query(self, text: str) -> List[float]:
"""Embed a query using a MiniMax embedding endpoint.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
embeddings = embed_with_retry(
self, texts=[text], embed_type=self.embed_type_query
)
return embeddings[0]
|