File size: 13,843 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
from typing import Any, Dict, List, Optional

import requests
from langchain_core._api import deprecated
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, SecretStr

DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large"
DEFAULT_BGE_MODEL = "BAAI/bge-large-en"
DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: "
DEFAULT_QUERY_INSTRUCTION = (
    "Represent the question for retrieving supporting documents: "
)
DEFAULT_QUERY_BGE_INSTRUCTION_EN = (
    "Represent this question for searching relevant passages: "
)
DEFAULT_QUERY_BGE_INSTRUCTION_ZH = "为这个句子生成表示以用于检索相关文章:"


@deprecated(
    since="0.2.2",
    removal="0.3.0",
    alternative_import="langchain_huggingface.HuggingFaceEmbeddings",
)
class HuggingFaceEmbeddings(BaseModel, Embeddings):
    """HuggingFace sentence_transformers embedding models.

    To use, you should have the ``sentence_transformers`` python package installed.

    Example:
        .. code-block:: python

            from langchain_community.embeddings import HuggingFaceEmbeddings

            model_name = "sentence-transformers/all-mpnet-base-v2"
            model_kwargs = {'device': 'cpu'}
            encode_kwargs = {'normalize_embeddings': False}
            hf = HuggingFaceEmbeddings(
                model_name=model_name,
                model_kwargs=model_kwargs,
                encode_kwargs=encode_kwargs
            )
    """

    client: Any  #: :meta private:
    model_name: str = DEFAULT_MODEL_NAME
    """Model name to use."""
    cache_folder: Optional[str] = None
    """Path to store models. 
    Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Keyword arguments to pass to the Sentence Transformer model, such as `device`,
    `prompts`, `default_prompt_name`, `revision`, `trust_remote_code`, or `token`.
    See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer"""
    encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Keyword arguments to pass when calling the `encode` method of the Sentence
    Transformer model, such as `prompt_name`, `prompt`, `batch_size`, `precision`,
    `normalize_embeddings`, and more.
    See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.encode"""
    multi_process: bool = False
    """Run encode() on multiple GPUs."""
    show_progress: bool = False
    """Whether to show a progress bar."""

    def __init__(self, **kwargs: Any):
        """Initialize the sentence_transformer."""
        super().__init__(**kwargs)
        try:
            import sentence_transformers

        except ImportError as exc:
            raise ImportError(
                "Could not import sentence_transformers python package. "
                "Please install it with `pip install sentence-transformers`."
            ) from exc

        self.client = sentence_transformers.SentenceTransformer(
            self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
        )

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        """Compute doc embeddings using a HuggingFace transformer model.

        Args:
            texts: The list of texts to embed.

        Returns:
            List of embeddings, one for each text.
        """
        import sentence_transformers

        texts = list(map(lambda x: x.replace("\n", " "), texts))
        if self.multi_process:
            pool = self.client.start_multi_process_pool()
            embeddings = self.client.encode_multi_process(texts, pool)
            sentence_transformers.SentenceTransformer.stop_multi_process_pool(pool)
        else:
            embeddings = self.client.encode(
                texts, show_progress_bar=self.show_progress, **self.encode_kwargs
            )

        return embeddings.tolist()

    def embed_query(self, text: str) -> List[float]:
        """Compute query embeddings using a HuggingFace transformer model.

        Args:
            text: The text to embed.

        Returns:
            Embeddings for the text.
        """
        return self.embed_documents([text])[0]


class HuggingFaceInstructEmbeddings(BaseModel, Embeddings):
    """Wrapper around sentence_transformers embedding models.

    To use, you should have the ``sentence_transformers``
    and ``InstructorEmbedding`` python packages installed.

    Example:
        .. code-block:: python

            from langchain_community.embeddings import HuggingFaceInstructEmbeddings

            model_name = "hkunlp/instructor-large"
            model_kwargs = {'device': 'cpu'}
            encode_kwargs = {'normalize_embeddings': True}
            hf = HuggingFaceInstructEmbeddings(
                model_name=model_name,
                model_kwargs=model_kwargs,
                encode_kwargs=encode_kwargs
            )
    """

    client: Any  #: :meta private:
    model_name: str = DEFAULT_INSTRUCT_MODEL
    """Model name to use."""
    cache_folder: Optional[str] = None
    """Path to store models. 
    Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Keyword arguments to pass to the model."""
    encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Keyword arguments to pass when calling the `encode` method of the model."""
    embed_instruction: str = DEFAULT_EMBED_INSTRUCTION
    """Instruction to use for embedding documents."""
    query_instruction: str = DEFAULT_QUERY_INSTRUCTION
    """Instruction to use for embedding query."""

    def __init__(self, **kwargs: Any):
        """Initialize the sentence_transformer."""
        super().__init__(**kwargs)
        try:
            from InstructorEmbedding import INSTRUCTOR

            self.client = INSTRUCTOR(
                self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
            )
        except ImportError as e:
            raise ImportError("Dependencies for InstructorEmbedding not found.") from e

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        """Compute doc embeddings using a HuggingFace instruct model.

        Args:
            texts: The list of texts to embed.

        Returns:
            List of embeddings, one for each text.
        """
        instruction_pairs = [[self.embed_instruction, text] for text in texts]
        embeddings = self.client.encode(instruction_pairs, **self.encode_kwargs)
        return embeddings.tolist()

    def embed_query(self, text: str) -> List[float]:
        """Compute query embeddings using a HuggingFace instruct model.

        Args:
            text: The text to embed.

        Returns:
            Embeddings for the text.
        """
        instruction_pair = [self.query_instruction, text]
        embedding = self.client.encode([instruction_pair], **self.encode_kwargs)[0]
        return embedding.tolist()


class HuggingFaceBgeEmbeddings(BaseModel, Embeddings):
    """HuggingFace sentence_transformers embedding models.

    To use, you should have the ``sentence_transformers`` python package installed.
    To use Nomic, make sure the version of ``sentence_transformers`` >= 2.3.0.

    Bge Example:
        .. code-block:: python

            from langchain_community.embeddings import HuggingFaceBgeEmbeddings

            model_name = "BAAI/bge-large-en"
            model_kwargs = {'device': 'cpu'}
            encode_kwargs = {'normalize_embeddings': True}
            hf = HuggingFaceBgeEmbeddings(
                model_name=model_name,
                model_kwargs=model_kwargs,
                encode_kwargs=encode_kwargs
            )
     Nomic Example:
        .. code-block:: python

            from langchain_community.embeddings import HuggingFaceBgeEmbeddings

            model_name = "nomic-ai/nomic-embed-text-v1"
            model_kwargs = {
                'device': 'cpu',
                'trust_remote_code':True
                }
            encode_kwargs = {'normalize_embeddings': True}
            hf = HuggingFaceBgeEmbeddings(
                model_name=model_name,
                model_kwargs=model_kwargs,
                encode_kwargs=encode_kwargs,
                query_instruction = "search_query:",
                embed_instruction = "search_document:"
            )
    """

    client: Any  #: :meta private:
    model_name: str = DEFAULT_BGE_MODEL
    """Model name to use."""
    cache_folder: Optional[str] = None
    """Path to store models.
    Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Keyword arguments to pass to the model."""
    encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Keyword arguments to pass when calling the `encode` method of the model."""
    query_instruction: str = DEFAULT_QUERY_BGE_INSTRUCTION_EN
    """Instruction to use for embedding query."""
    embed_instruction: str = ""
    """Instruction to use for embedding document."""

    def __init__(self, **kwargs: Any):
        """Initialize the sentence_transformer."""
        super().__init__(**kwargs)
        try:
            import sentence_transformers

        except ImportError as exc:
            raise ImportError(
                "Could not import sentence_transformers python package. "
                "Please install it with `pip install sentence_transformers`."
            ) from exc

        self.client = sentence_transformers.SentenceTransformer(
            self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
        )
        if "-zh" in self.model_name:
            self.query_instruction = DEFAULT_QUERY_BGE_INSTRUCTION_ZH

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        """Compute doc embeddings using a HuggingFace transformer model.

        Args:
            texts: The list of texts to embed.

        Returns:
            List of embeddings, one for each text.
        """
        texts = [self.embed_instruction + t.replace("\n", " ") for t in texts]
        embeddings = self.client.encode(texts, **self.encode_kwargs)
        return embeddings.tolist()

    def embed_query(self, text: str) -> List[float]:
        """Compute query embeddings using a HuggingFace transformer model.

        Args:
            text: The text to embed.

        Returns:
            Embeddings for the text.
        """
        text = text.replace("\n", " ")
        embedding = self.client.encode(
            self.query_instruction + text, **self.encode_kwargs
        )
        return embedding.tolist()


class HuggingFaceInferenceAPIEmbeddings(BaseModel, Embeddings):
    """Embed texts using the HuggingFace API.

    Requires a HuggingFace Inference API key and a model name.
    """

    api_key: SecretStr
    """Your API key for the HuggingFace Inference API."""
    model_name: str = "sentence-transformers/all-MiniLM-L6-v2"
    """The name of the model to use for text embeddings."""
    api_url: Optional[str] = None
    """Custom inference endpoint url. None for using default public url."""
    additional_headers: Dict[str, str] = {}
    """Pass additional headers to the requests library if needed."""

    @property
    def _api_url(self) -> str:
        return self.api_url or self._default_api_url

    @property
    def _default_api_url(self) -> str:
        return (
            "https://api-inference.huggingface.co"
            "/pipeline"
            "/feature-extraction"
            f"/{self.model_name}"
        )

    @property
    def _headers(self) -> dict:
        return {
            "Authorization": f"Bearer {self.api_key.get_secret_value()}",
            **self.additional_headers,
        }

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        """Get the embeddings for a list of texts.

        Args:
            texts (Documents): A list of texts to get embeddings for.

        Returns:
            Embedded texts as List[List[float]], where each inner List[float]
                corresponds to a single input text.

        Example:
            .. code-block:: python

                from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings

                hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
                    api_key="your_api_key",
                    model_name="sentence-transformers/all-MiniLM-l6-v2"
                )
                texts = ["Hello, world!", "How are you?"]
                hf_embeddings.embed_documents(texts)
        """  # noqa: E501
        response = requests.post(
            self._api_url,
            headers=self._headers,
            json={
                "inputs": texts,
                "options": {"wait_for_model": True, "use_cache": True},
            },
        )
        return response.json()

    def embed_query(self, text: str) -> List[float]:
        """Compute query embeddings using a HuggingFace transformer model.

        Args:
            text: The text to embed.

        Returns:
            Embeddings for the text.
        """
        return self.embed_documents([text])[0]