Spaces:
Runtime error
Runtime error
File size: 14,583 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
"""Wrapper around Google VertexAI chat-based models."""
from __future__ import annotations
import base64
import logging
import re
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, Dict, Iterator, List, Optional, Union, cast
from urllib.parse import urlparse
import requests
from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
BaseChatModel,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
HumanMessage,
SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import root_validator
from langchain_community.llms.vertexai import (
_VertexAICommon,
is_codey_model,
is_gemini_model,
)
from langchain_community.utilities.vertexai import (
load_image_from_gcs,
raise_vertex_import_error,
)
if TYPE_CHECKING:
from vertexai.language_models import (
ChatMessage,
ChatSession,
CodeChatSession,
InputOutputTextPair,
)
from vertexai.preview.generative_models import Content
logger = logging.getLogger(__name__)
@dataclass
class _ChatHistory:
"""Represents a context and a history of messages."""
history: List["ChatMessage"] = field(default_factory=list)
context: Optional[str] = None
def _parse_chat_history(history: List[BaseMessage]) -> _ChatHistory:
"""Parse a sequence of messages into history.
Args:
history: The list of messages to re-create the history of the chat.
Returns:
A parsed chat history.
Raises:
ValueError: If a sequence of message has a SystemMessage not at the
first place.
"""
from vertexai.language_models import ChatMessage
vertex_messages, context = [], None
for i, message in enumerate(history):
content = cast(str, message.content)
if i == 0 and isinstance(message, SystemMessage):
context = content
elif isinstance(message, AIMessage):
vertex_message = ChatMessage(content=message.content, author="bot")
vertex_messages.append(vertex_message)
elif isinstance(message, HumanMessage):
vertex_message = ChatMessage(content=message.content, author="user")
vertex_messages.append(vertex_message)
else:
raise ValueError(
f"Unexpected message with type {type(message)} at the position {i}."
)
chat_history = _ChatHistory(context=context, history=vertex_messages)
return chat_history
def _is_url(s: str) -> bool:
try:
result = urlparse(s)
return all([result.scheme, result.netloc])
except Exception as e:
logger.debug(f"Unable to parse URL: {e}")
return False
def _parse_chat_history_gemini(
history: List[BaseMessage], project: Optional[str]
) -> List["Content"]:
from vertexai.preview.generative_models import Content, Image, Part
def _convert_to_prompt(part: Union[str, Dict]) -> Part:
if isinstance(part, str):
return Part.from_text(part)
if not isinstance(part, Dict):
raise ValueError(
f"Message's content is expected to be a dict, got {type(part)}!"
)
if part["type"] == "text":
return Part.from_text(part["text"])
elif part["type"] == "image_url":
path = part["image_url"]["url"]
if path.startswith("gs://"):
image = load_image_from_gcs(path=path, project=project)
elif path.startswith("data:image/"):
# extract base64 component from image uri
encoded: Any = re.search(r"data:image/\w{2,4};base64,(.*)", path)
if encoded:
encoded = encoded.group(1)
else:
raise ValueError(
"Invalid image uri. It should be in the format "
"data:image/<image_type>;base64,<base64_encoded_image>."
)
image = Image.from_bytes(base64.b64decode(encoded))
elif _is_url(path):
response = requests.get(path)
response.raise_for_status()
image = Image.from_bytes(response.content)
else:
image = Image.load_from_file(path)
else:
raise ValueError("Only text and image_url types are supported!")
return Part.from_image(image)
vertex_messages = []
for i, message in enumerate(history):
if i == 0 and isinstance(message, SystemMessage):
raise ValueError("SystemMessages are not yet supported!")
elif isinstance(message, AIMessage):
role = "model"
elif isinstance(message, HumanMessage):
role = "user"
else:
raise ValueError(
f"Unexpected message with type {type(message)} at the position {i}."
)
raw_content = message.content
if isinstance(raw_content, str):
raw_content = [raw_content]
parts = [_convert_to_prompt(part) for part in raw_content]
vertex_message = Content(role=role, parts=parts)
vertex_messages.append(vertex_message)
return vertex_messages
def _parse_examples(examples: List[BaseMessage]) -> List["InputOutputTextPair"]:
from vertexai.language_models import InputOutputTextPair
if len(examples) % 2 != 0:
raise ValueError(
f"Expect examples to have an even amount of messages, got {len(examples)}."
)
example_pairs = []
input_text = None
for i, example in enumerate(examples):
if i % 2 == 0:
if not isinstance(example, HumanMessage):
raise ValueError(
f"Expected the first message in a part to be from human, got "
f"{type(example)} for the {i}th message."
)
input_text = example.content
if i % 2 == 1:
if not isinstance(example, AIMessage):
raise ValueError(
f"Expected the second message in a part to be from AI, got "
f"{type(example)} for the {i}th message."
)
pair = InputOutputTextPair(
input_text=input_text, output_text=example.content
)
example_pairs.append(pair)
return example_pairs
def _get_question(messages: List[BaseMessage]) -> HumanMessage:
"""Get the human message at the end of a list of input messages to a chat model."""
if not messages:
raise ValueError("You should provide at least one message to start the chat!")
question = messages[-1]
if not isinstance(question, HumanMessage):
raise ValueError(
f"Last message in the list should be from human, got {question.type}."
)
return question
@deprecated(
since="0.0.12",
removal="0.3.0",
alternative_import="langchain_google_vertexai.ChatVertexAI",
)
class ChatVertexAI(_VertexAICommon, BaseChatModel):
"""`Vertex AI` Chat large language models API."""
model_name: str = "chat-bison"
"Underlying model name."
examples: Optional[List[BaseMessage]] = None
@classmethod
def is_lc_serializable(self) -> bool:
return True
@classmethod
def get_lc_namespace(cls) -> List[str]:
"""Get the namespace of the langchain object."""
return ["langchain", "chat_models", "vertexai"]
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in environment."""
is_gemini = is_gemini_model(values["model_name"])
cls._try_init_vertexai(values)
try:
from vertexai.language_models import ChatModel, CodeChatModel
if is_gemini:
from vertexai.preview.generative_models import (
GenerativeModel,
)
except ImportError:
raise_vertex_import_error()
if is_gemini:
values["client"] = GenerativeModel(model_name=values["model_name"])
else:
if is_codey_model(values["model_name"]):
model_cls = CodeChatModel
else:
model_cls = ChatModel
values["client"] = model_cls.from_pretrained(values["model_name"])
return values
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> ChatResult:
"""Generate next turn in the conversation.
Args:
messages: The history of the conversation as a list of messages. Code chat
does not support context.
stop: The list of stop words (optional).
run_manager: The CallbackManager for LLM run, it's not used at the moment.
stream: Whether to use the streaming endpoint.
Returns:
The ChatResult that contains outputs generated by the model.
Raises:
ValueError: if the last message in the list is not from human.
"""
should_stream = stream if stream is not None else self.streaming
if should_stream:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
question = _get_question(messages)
params = self._prepare_params(stop=stop, stream=False, **kwargs)
msg_params = {}
if "candidate_count" in params:
msg_params["candidate_count"] = params.pop("candidate_count")
if self._is_gemini_model:
history_gemini = _parse_chat_history_gemini(messages, project=self.project)
message = history_gemini.pop()
chat = self.client.start_chat(history=history_gemini)
response = chat.send_message(message, generation_config=params)
else:
history = _parse_chat_history(messages[:-1])
examples = kwargs.get("examples") or self.examples
if examples:
params["examples"] = _parse_examples(examples)
chat = self._start_chat(history, **params)
response = chat.send_message(question.content, **msg_params)
generations = [
ChatGeneration(message=AIMessage(content=r.text))
for r in response.candidates
]
return ChatResult(generations=generations)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""Asynchronously generate next turn in the conversation.
Args:
messages: The history of the conversation as a list of messages. Code chat
does not support context.
stop: The list of stop words (optional).
run_manager: The CallbackManager for LLM run, it's not used at the moment.
Returns:
The ChatResult that contains outputs generated by the model.
Raises:
ValueError: if the last message in the list is not from human.
"""
if "stream" in kwargs:
kwargs.pop("stream")
logger.warning("ChatVertexAI does not currently support async streaming.")
params = self._prepare_params(stop=stop, **kwargs)
msg_params = {}
if "candidate_count" in params:
msg_params["candidate_count"] = params.pop("candidate_count")
if self._is_gemini_model:
history_gemini = _parse_chat_history_gemini(messages, project=self.project)
message = history_gemini.pop()
chat = self.client.start_chat(history=history_gemini)
response = await chat.send_message_async(message, generation_config=params)
else:
question = _get_question(messages)
history = _parse_chat_history(messages[:-1])
examples = kwargs.get("examples", None)
if examples:
params["examples"] = _parse_examples(examples)
chat = self._start_chat(history, **params)
response = await chat.send_message_async(question.content, **msg_params)
generations = [
ChatGeneration(message=AIMessage(content=r.text))
for r in response.candidates
]
return ChatResult(generations=generations)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
params = self._prepare_params(stop=stop, stream=True, **kwargs)
if self._is_gemini_model:
history_gemini = _parse_chat_history_gemini(messages, project=self.project)
message = history_gemini.pop()
chat = self.client.start_chat(history=history_gemini)
responses = chat.send_message(
message, stream=True, generation_config=params
)
else:
question = _get_question(messages)
history = _parse_chat_history(messages[:-1])
examples = kwargs.get("examples", None)
if examples:
params["examples"] = _parse_examples(examples)
chat = self._start_chat(history, **params)
responses = chat.send_message_streaming(question.content, **params)
for response in responses:
chunk = ChatGenerationChunk(message=AIMessageChunk(content=response.text))
if run_manager:
run_manager.on_llm_new_token(response.text, chunk=chunk)
yield chunk
def _start_chat(
self, history: _ChatHistory, **kwargs: Any
) -> Union[ChatSession, CodeChatSession]:
if not self.is_codey_model:
return self.client.start_chat(
context=history.context, message_history=history.history, **kwargs
)
else:
return self.client.start_chat(message_history=history.history, **kwargs)
|