Spaces:
Runtime error
Runtime error
File size: 10,144 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import logging
from typing import Any, Dict, Iterator, List, Mapping, Optional, cast
from urllib.parse import urlparse
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models import BaseChatModel
from langchain_core.language_models.base import LanguageModelInput
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
FunctionMessage,
HumanMessage,
HumanMessageChunk,
SystemMessage,
SystemMessageChunk,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import (
Field,
PrivateAttr,
)
from langchain_core.runnables import RunnableConfig
logger = logging.getLogger(__name__)
class ChatMlflow(BaseChatModel):
"""`MLflow` chat models API.
To use, you should have the `mlflow[genai]` python package installed.
For more information, see https://mlflow.org/docs/latest/llms/deployments.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatMlflow
chat = ChatMlflow(
target_uri="http://localhost:5000",
endpoint="chat",
temperature-0.1,
)
"""
endpoint: str
"""The endpoint to use."""
target_uri: str
"""The target URI to use."""
temperature: float = 0.0
"""The sampling temperature."""
n: int = 1
"""The number of completion choices to generate."""
stop: Optional[List[str]] = None
"""The stop sequence."""
max_tokens: Optional[int] = None
"""The maximum number of tokens to generate."""
extra_params: dict = Field(default_factory=dict)
"""Any extra parameters to pass to the endpoint."""
_client: Any = PrivateAttr()
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
self._validate_uri()
try:
from mlflow.deployments import get_deploy_client
self._client = get_deploy_client(self.target_uri)
except ImportError as e:
raise ImportError(
"Failed to create the client. "
f"Please run `pip install mlflow{self._mlflow_extras}` to install "
"required dependencies."
) from e
@property
def _mlflow_extras(self) -> str:
return "[genai]"
def _validate_uri(self) -> None:
if self.target_uri == "databricks":
return
allowed = ["http", "https", "databricks"]
if urlparse(self.target_uri).scheme not in allowed:
raise ValueError(
f"Invalid target URI: {self.target_uri}. "
f"The scheme must be one of {allowed}."
)
@property
def _default_params(self) -> Dict[str, Any]:
params: Dict[str, Any] = {
"target_uri": self.target_uri,
"endpoint": self.endpoint,
"temperature": self.temperature,
"n": self.n,
"stop": self.stop,
"max_tokens": self.max_tokens,
"extra_params": self.extra_params,
}
return params
def _prepare_inputs(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> Dict[str, Any]:
message_dicts = [
ChatMlflow._convert_message_to_dict(message) for message in messages
]
data: Dict[str, Any] = {
"messages": message_dicts,
"temperature": self.temperature,
"n": self.n,
**self.extra_params,
**kwargs,
}
if stop := self.stop or stop:
data["stop"] = stop
if self.max_tokens is not None:
data["max_tokens"] = self.max_tokens
return data
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
data = self._prepare_inputs(
messages,
stop,
**kwargs,
)
resp = self._client.predict(endpoint=self.endpoint, inputs=data)
return ChatMlflow._create_chat_result(resp)
def stream(
self,
input: LanguageModelInput,
config: Optional[RunnableConfig] = None,
*,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> Iterator[BaseMessageChunk]:
# We need to override `stream` to handle the case
# that `self._client` does not implement `predict_stream`
if not hasattr(self._client, "predict_stream"):
# MLflow deployment client does not implement streaming,
# so use default implementation
yield cast(
BaseMessageChunk, self.invoke(input, config=config, stop=stop, **kwargs)
)
else:
yield from super().stream(input, config, stop=stop, **kwargs)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
data = self._prepare_inputs(
messages,
stop,
**kwargs,
)
# TODO: check if `_client.predict_stream` is available.
chunk_iter = self._client.predict_stream(endpoint=self.endpoint, inputs=data)
first_chunk_role = None
for chunk in chunk_iter:
choice = chunk["choices"][0]
chunk_delta = choice["delta"]
if first_chunk_role is None:
first_chunk_role = chunk_delta.get("role")
chunk = ChatMlflow._convert_delta_to_message_chunk(
chunk_delta, first_chunk_role
)
generation_info = {}
if finish_reason := choice.get("finish_reason"):
generation_info["finish_reason"] = finish_reason
if logprobs := choice.get("logprobs"):
generation_info["logprobs"] = logprobs
chunk = ChatGenerationChunk(
message=chunk, generation_info=generation_info or None
)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk, logprobs=logprobs)
yield chunk
@property
def _identifying_params(self) -> Dict[str, Any]:
return self._default_params
def _get_invocation_params(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> Dict[str, Any]:
"""Get the parameters used to invoke the model FOR THE CALLBACKS."""
return {
**self._default_params,
**super()._get_invocation_params(stop=stop, **kwargs),
}
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "mlflow-chat"
@staticmethod
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
role = _dict["role"]
content = _dict["content"]
if role == "user":
return HumanMessage(content=content)
elif role == "assistant":
return AIMessage(content=content)
elif role == "system":
return SystemMessage(content=content)
else:
return ChatMessage(content=content, role=role)
@staticmethod
def _convert_delta_to_message_chunk(
_dict: Mapping[str, Any], default_role: str
) -> BaseMessageChunk:
role = _dict.get("role", default_role)
content = _dict["content"]
if role == "user":
return HumanMessageChunk(content=content)
elif role == "assistant":
return AIMessageChunk(content=content)
elif role == "system":
return SystemMessageChunk(content=content)
else:
return ChatMessageChunk(content=content, role=role)
@staticmethod
def _raise_functions_not_supported() -> None:
raise ValueError(
"Function messages are not supported by Databricks. Please"
" create a feature request at https://github.com/mlflow/mlflow/issues."
)
@staticmethod
def _convert_message_to_dict(message: BaseMessage) -> dict:
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, FunctionMessage):
raise ValueError(
"Function messages are not supported by Databricks. Please"
" create a feature request at https://github.com/mlflow/mlflow/issues."
)
else:
raise ValueError(f"Got unknown message type: {message}")
if "function_call" in message.additional_kwargs:
ChatMlflow._raise_functions_not_supported()
if message.additional_kwargs:
logger.warning(
"Additional message arguments are unsupported by Databricks"
" and will be ignored: %s",
message.additional_kwargs,
)
return message_dict
@staticmethod
def _create_chat_result(response: Mapping[str, Any]) -> ChatResult:
generations = []
for choice in response["choices"]:
message = ChatMlflow._convert_dict_to_message(choice["message"])
usage = choice.get("usage", {})
gen = ChatGeneration(
message=message,
generation_info=usage,
)
generations.append(gen)
usage = response.get("usage", {})
return ChatResult(generations=generations, llm_output=usage)
|