Spaces:
Runtime error
Runtime error
File size: 10,026 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
"""KonkoAI chat wrapper."""
from __future__ import annotations
import logging
import os
import warnings
from typing import (
Any,
Dict,
Iterator,
List,
Optional,
Set,
Tuple,
Union,
cast,
)
import requests
from langchain_core.callbacks import (
CallbackManagerForLLMRun,
)
from langchain_core.messages import AIMessageChunk, BaseMessage
from langchain_core.outputs import ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from langchain_community.adapters.openai import (
convert_message_to_dict,
)
from langchain_community.chat_models.openai import (
ChatOpenAI,
_convert_delta_to_message_chunk,
generate_from_stream,
)
from langchain_community.utils.openai import is_openai_v1
DEFAULT_API_BASE = "https://api.konko.ai/v1"
DEFAULT_MODEL = "meta-llama/Llama-2-13b-chat-hf"
logger = logging.getLogger(__name__)
class ChatKonko(ChatOpenAI):
"""`ChatKonko` Chat large language models API.
To use, you should have the ``konko`` python package installed, and the
environment variable ``KONKO_API_KEY`` and ``OPENAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the konko.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatKonko
llm = ChatKonko(model="meta-llama/Llama-2-13b-chat-hf")
"""
@property
def lc_secrets(self) -> Dict[str, str]:
return {"konko_api_key": "KONKO_API_KEY", "openai_api_key": "OPENAI_API_KEY"}
@classmethod
def is_lc_serializable(cls) -> bool:
"""Return whether this model can be serialized by Langchain."""
return False
client: Any = None #: :meta private:
model: str = Field(default=DEFAULT_MODEL, alias="model")
"""Model name to use."""
temperature: float = 0.7
"""What sampling temperature to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
openai_api_key: Optional[str] = None
konko_api_key: Optional[str] = None
max_retries: int = 6
"""Maximum number of retries to make when generating."""
streaming: bool = False
"""Whether to stream the results or not."""
n: int = 1
"""Number of chat completions to generate for each prompt."""
max_tokens: int = 20
"""Maximum number of tokens to generate."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["konko_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "konko_api_key", "KONKO_API_KEY")
)
try:
import konko
except ImportError:
raise ImportError(
"Could not import konko python package. "
"Please install it with `pip install konko`."
)
try:
if is_openai_v1():
values["client"] = konko.chat.completions
else:
values["client"] = konko.ChatCompletion
except AttributeError:
raise ValueError(
"`konko` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the konko package. Try upgrading it "
"with `pip install --upgrade konko`."
)
if not hasattr(konko, "_is_legacy_openai"):
warnings.warn(
"You are using an older version of the 'konko' package. "
"Please consider upgrading to access new features."
)
if values["n"] < 1:
raise ValueError("n must be at least 1.")
if values["n"] > 1 and values["streaming"]:
raise ValueError("n must be 1 when streaming.")
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Konko API."""
return {
"model": self.model,
"max_tokens": self.max_tokens,
"stream": self.streaming,
"n": self.n,
"temperature": self.temperature,
**self.model_kwargs,
}
@staticmethod
def get_available_models(
konko_api_key: Union[str, SecretStr, None] = None,
openai_api_key: Union[str, SecretStr, None] = None,
konko_api_base: str = DEFAULT_API_BASE,
) -> Set[str]:
"""Get available models from Konko API."""
# Try to retrieve the OpenAI API key if it's not passed as an argument
if not openai_api_key:
try:
openai_api_key = convert_to_secret_str(os.environ["OPENAI_API_KEY"])
except KeyError:
pass # It's okay if it's not set, we just won't use it
elif isinstance(openai_api_key, str):
openai_api_key = convert_to_secret_str(openai_api_key)
# Try to retrieve the Konko API key if it's not passed as an argument
if not konko_api_key:
try:
konko_api_key = convert_to_secret_str(os.environ["KONKO_API_KEY"])
except KeyError:
raise ValueError(
"Konko API key must be passed as keyword argument or "
"set in environment variable KONKO_API_KEY."
)
elif isinstance(konko_api_key, str):
konko_api_key = convert_to_secret_str(konko_api_key)
models_url = f"{konko_api_base}/models"
headers = {
"Authorization": f"Bearer {konko_api_key.get_secret_value()}",
}
if openai_api_key:
headers["X-OpenAI-Api-Key"] = cast(
SecretStr, openai_api_key
).get_secret_value()
models_response = requests.get(models_url, headers=headers)
if models_response.status_code != 200:
raise ValueError(
f"Error getting models from {models_url}: "
f"{models_response.status_code}"
)
return {model["id"] for model in models_response.json()["data"]}
def completion_with_retry(
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
) -> Any:
def _completion_with_retry(**kwargs: Any) -> Any:
return self.client.create(**kwargs)
return _completion_with_retry(**kwargs)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs, "stream": True}
default_chunk_class = AIMessageChunk
for chunk in self.completion_with_retry(
messages=message_dicts, run_manager=run_manager, **params
):
if len(chunk["choices"]) == 0:
continue
choice = chunk["choices"][0]
chunk = _convert_delta_to_message_chunk(
choice["delta"], default_chunk_class
)
finish_reason = choice.get("finish_reason")
generation_info = (
dict(finish_reason=finish_reason) if finish_reason is not None else None
)
default_chunk_class = chunk.__class__
cg_chunk = ChatGenerationChunk(
message=chunk, generation_info=generation_info
)
if run_manager:
run_manager.on_llm_new_token(cg_chunk.text, chunk=cg_chunk)
yield cg_chunk
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> ChatResult:
should_stream = stream if stream is not None else self.streaming
if should_stream:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
response = self.completion_with_retry(
messages=message_dicts, run_manager=run_manager, **params
)
return self._create_chat_result(response)
def _create_message_dicts(
self, messages: List[BaseMessage], stop: Optional[List[str]]
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
params = self._client_params
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
message_dicts = [convert_message_to_dict(m) for m in messages]
return message_dicts, params
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model}, **self._default_params}
@property
def _client_params(self) -> Dict[str, Any]:
"""Get the parameters used for the konko client."""
return {**self._default_params}
def _get_invocation_params(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> Dict[str, Any]:
"""Get the parameters used to invoke the model."""
return {
"model": self.model,
**super()._get_invocation_params(stop=stop),
**self._default_params,
**kwargs,
}
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "konko-chat"
|