Spaces:
Runtime error
Runtime error
File size: 9,738 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
from __future__ import annotations
import logging
from typing import (
TYPE_CHECKING,
Any,
AsyncIterator,
Dict,
Iterator,
List,
Mapping,
Optional,
Type,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
BaseChatModel,
agenerate_from_stream,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
FunctionMessage,
FunctionMessageChunk,
HumanMessage,
HumanMessageChunk,
SystemMessage,
SystemMessageChunk,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_community.llms.gigachat import _BaseGigaChat
if TYPE_CHECKING:
import gigachat.models as gm
logger = logging.getLogger(__name__)
def _convert_dict_to_message(message: gm.Messages) -> BaseMessage:
from gigachat.models import FunctionCall, MessagesRole
additional_kwargs: Dict = {}
if function_call := message.function_call:
if isinstance(function_call, FunctionCall):
additional_kwargs["function_call"] = dict(function_call)
elif isinstance(function_call, dict):
additional_kwargs["function_call"] = function_call
if message.role == MessagesRole.SYSTEM:
return SystemMessage(content=message.content)
elif message.role == MessagesRole.USER:
return HumanMessage(content=message.content)
elif message.role == MessagesRole.ASSISTANT:
return AIMessage(content=message.content, additional_kwargs=additional_kwargs)
else:
raise TypeError(f"Got unknown role {message.role} {message}")
def _convert_message_to_dict(message: gm.BaseMessage) -> gm.Messages:
from gigachat.models import Messages, MessagesRole
if isinstance(message, SystemMessage):
return Messages(role=MessagesRole.SYSTEM, content=message.content)
elif isinstance(message, HumanMessage):
return Messages(role=MessagesRole.USER, content=message.content)
elif isinstance(message, AIMessage):
return Messages(
role=MessagesRole.ASSISTANT,
content=message.content,
function_call=message.additional_kwargs.get("function_call", None),
)
elif isinstance(message, ChatMessage):
return Messages(role=MessagesRole(message.role), content=message.content)
elif isinstance(message, FunctionMessage):
return Messages(role=MessagesRole.FUNCTION, content=message.content)
else:
raise TypeError(f"Got unknown type {message}")
def _convert_delta_to_message_chunk(
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
role = _dict.get("role")
content = _dict.get("content") or ""
additional_kwargs: Dict = {}
if _dict.get("function_call"):
function_call = dict(_dict["function_call"])
if "name" in function_call and function_call["name"] is None:
function_call["name"] = ""
additional_kwargs["function_call"] = function_call
if role == "user" or default_class == HumanMessageChunk:
return HumanMessageChunk(content=content)
elif role == "assistant" or default_class == AIMessageChunk:
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
elif role == "system" or default_class == SystemMessageChunk:
return SystemMessageChunk(content=content)
elif role == "function" or default_class == FunctionMessageChunk:
return FunctionMessageChunk(content=content, name=_dict["name"])
elif role or default_class == ChatMessageChunk:
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type]
else:
return default_class(content=content) # type: ignore[call-arg]
class GigaChat(_BaseGigaChat, BaseChatModel):
"""`GigaChat` large language models API.
To use, you should pass login and password to access GigaChat API or use token.
Example:
.. code-block:: python
from langchain_community.chat_models import GigaChat
giga = GigaChat(credentials=..., scope=..., verify_ssl_certs=False)
"""
def _build_payload(self, messages: List[BaseMessage], **kwargs: Any) -> gm.Chat:
from gigachat.models import Chat
payload = Chat(
messages=[_convert_message_to_dict(m) for m in messages],
)
payload.functions = kwargs.get("functions", None)
payload.model = self.model
if self.profanity_check is not None:
payload.profanity_check = self.profanity_check
if self.temperature is not None:
payload.temperature = self.temperature
if self.top_p is not None:
payload.top_p = self.top_p
if self.max_tokens is not None:
payload.max_tokens = self.max_tokens
if self.repetition_penalty is not None:
payload.repetition_penalty = self.repetition_penalty
if self.update_interval is not None:
payload.update_interval = self.update_interval
if self.verbose:
logger.warning("Giga request: %s", payload.dict())
return payload
def _create_chat_result(self, response: Any) -> ChatResult:
generations = []
for res in response.choices:
message = _convert_dict_to_message(res.message)
finish_reason = res.finish_reason
gen = ChatGeneration(
message=message,
generation_info={"finish_reason": finish_reason},
)
generations.append(gen)
if finish_reason != "stop":
logger.warning(
"Giga generation stopped with reason: %s",
finish_reason,
)
if self.verbose:
logger.warning("Giga response: %s", message.content)
llm_output = {"token_usage": response.usage, "model_name": response.model}
return ChatResult(generations=generations, llm_output=llm_output)
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> ChatResult:
should_stream = stream if stream is not None else self.streaming
if should_stream:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
payload = self._build_payload(messages, **kwargs)
response = self._client.chat(payload)
return self._create_chat_result(response)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> ChatResult:
should_stream = stream if stream is not None else self.streaming
if should_stream:
stream_iter = self._astream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return await agenerate_from_stream(stream_iter)
payload = self._build_payload(messages, **kwargs)
response = await self._client.achat(payload)
return self._create_chat_result(response)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
payload = self._build_payload(messages, **kwargs)
for chunk in self._client.stream(payload):
if not isinstance(chunk, dict):
chunk = chunk.dict()
if len(chunk["choices"]) == 0:
continue
choice = chunk["choices"][0]
content = choice.get("delta", {}).get("content", {})
chunk = _convert_delta_to_message_chunk(choice["delta"], AIMessageChunk)
finish_reason = choice.get("finish_reason")
generation_info = (
dict(finish_reason=finish_reason) if finish_reason is not None else None
)
if run_manager:
run_manager.on_llm_new_token(content)
yield ChatGenerationChunk(message=chunk, generation_info=generation_info)
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
payload = self._build_payload(messages, **kwargs)
async for chunk in self._client.astream(payload):
if not isinstance(chunk, dict):
chunk = chunk.dict()
if len(chunk["choices"]) == 0:
continue
choice = chunk["choices"][0]
content = choice.get("delta", {}).get("content", {})
chunk = _convert_delta_to_message_chunk(choice["delta"], AIMessageChunk)
finish_reason = choice.get("finish_reason")
generation_info = (
dict(finish_reason=finish_reason) if finish_reason is not None else None
)
yield ChatGenerationChunk(message=chunk, generation_info=generation_info)
if run_manager:
await run_manager.on_llm_new_token(content)
|