Spaces:
Runtime error
Runtime error
File size: 27,406 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 |
import logging
import os
import random
import string
import tempfile
import traceback
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict, List, Optional, Sequence, Union
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.documents import Document
from langchain_core.outputs import LLMResult
from langchain_core.utils import get_from_dict_or_env, guard_import
from langchain_community.callbacks.utils import (
BaseMetadataCallbackHandler,
flatten_dict,
hash_string,
import_pandas,
import_spacy,
import_textstat,
)
logger = logging.getLogger(__name__)
def import_mlflow() -> Any:
"""Import the mlflow python package and raise an error if it is not installed."""
return guard_import("mlflow")
def mlflow_callback_metrics() -> List[str]:
"""Get the metrics to log to MLFlow."""
return [
"step",
"starts",
"ends",
"errors",
"text_ctr",
"chain_starts",
"chain_ends",
"llm_starts",
"llm_ends",
"llm_streams",
"tool_starts",
"tool_ends",
"agent_ends",
"retriever_starts",
"retriever_ends",
]
def get_text_complexity_metrics() -> List[str]:
"""Get the text complexity metrics from textstat."""
return [
"flesch_reading_ease",
"flesch_kincaid_grade",
"smog_index",
"coleman_liau_index",
"automated_readability_index",
"dale_chall_readability_score",
"difficult_words",
"linsear_write_formula",
"gunning_fog",
# "text_standard"
"fernandez_huerta",
"szigriszt_pazos",
"gutierrez_polini",
"crawford",
"gulpease_index",
"osman",
]
def analyze_text(
text: str,
nlp: Any = None,
textstat: Any = None,
) -> dict:
"""Analyze text using textstat and spacy.
Parameters:
text (str): The text to analyze.
nlp (spacy.lang): The spacy language model to use for visualization.
textstat: The textstat library to use for complexity metrics calculation.
Returns:
(dict): A dictionary containing the complexity metrics and visualization
files serialized to HTML string.
"""
resp: Dict[str, Any] = {}
if textstat is not None:
text_complexity_metrics = {
key: getattr(textstat, key)(text) for key in get_text_complexity_metrics()
}
resp.update({"text_complexity_metrics": text_complexity_metrics})
resp.update(text_complexity_metrics)
if nlp is not None:
spacy = import_spacy()
doc = nlp(text)
dep_out = spacy.displacy.render(doc, style="dep", jupyter=False, page=True)
ent_out = spacy.displacy.render(doc, style="ent", jupyter=False, page=True)
text_visualizations = {
"dependency_tree": dep_out,
"entities": ent_out,
}
resp.update(text_visualizations)
return resp
def construct_html_from_prompt_and_generation(prompt: str, generation: str) -> Any:
"""Construct an html element from a prompt and a generation.
Parameters:
prompt (str): The prompt.
generation (str): The generation.
Returns:
(str): The html string."""
formatted_prompt = prompt.replace("\n", "<br>")
formatted_generation = generation.replace("\n", "<br>")
return f"""
<p style="color:black;">{formatted_prompt}:</p>
<blockquote>
<p style="color:green;">
{formatted_generation}
</p>
</blockquote>
"""
class MlflowLogger:
"""Callback Handler that logs metrics and artifacts to mlflow server.
Parameters:
name (str): Name of the run.
experiment (str): Name of the experiment.
tags (dict): Tags to be attached for the run.
tracking_uri (str): MLflow tracking server uri.
This handler implements the helper functions to initialize,
log metrics and artifacts to the mlflow server.
"""
def __init__(self, **kwargs: Any):
self.mlflow = import_mlflow()
if "DATABRICKS_RUNTIME_VERSION" in os.environ:
self.mlflow.set_tracking_uri("databricks")
self.mlf_expid = self.mlflow.tracking.fluent._get_experiment_id()
self.mlf_exp = self.mlflow.get_experiment(self.mlf_expid)
else:
tracking_uri = get_from_dict_or_env(
kwargs, "tracking_uri", "MLFLOW_TRACKING_URI", ""
)
self.mlflow.set_tracking_uri(tracking_uri)
if run_id := kwargs.get("run_id"):
self.mlf_expid = self.mlflow.get_run(run_id).info.experiment_id
else:
# User can set other env variables described here
# > https://www.mlflow.org/docs/latest/tracking.html#logging-to-a-tracking-server
experiment_name = get_from_dict_or_env(
kwargs, "experiment_name", "MLFLOW_EXPERIMENT_NAME"
)
self.mlf_exp = self.mlflow.get_experiment_by_name(experiment_name)
if self.mlf_exp is not None:
self.mlf_expid = self.mlf_exp.experiment_id
else:
self.mlf_expid = self.mlflow.create_experiment(experiment_name)
self.start_run(
kwargs["run_name"], kwargs["run_tags"], kwargs.get("run_id", None)
)
self.dir = kwargs.get("artifacts_dir", "")
def start_run(
self, name: str, tags: Dict[str, str], run_id: Optional[str] = None
) -> None:
"""
If run_id is provided, it will reuse the run with the given run_id.
Otherwise, it starts a new run, auto generates the random suffix for name.
"""
if run_id is None:
if name.endswith("-%"):
rname = "".join(
random.choices(string.ascii_uppercase + string.digits, k=7)
)
name = name[:-1] + rname
run = self.mlflow.MlflowClient().create_run(
self.mlf_expid, run_name=name, tags=tags
)
run_id = run.info.run_id
self.run_id = run_id
def finish_run(self) -> None:
"""To finish the run."""
self.mlflow.end_run()
def metric(self, key: str, value: float) -> None:
"""To log metric to mlflow server."""
self.mlflow.log_metric(key, value, run_id=self.run_id)
def metrics(
self, data: Union[Dict[str, float], Dict[str, int]], step: Optional[int] = 0
) -> None:
"""To log all metrics in the input dict."""
self.mlflow.log_metrics(data, run_id=self.run_id)
def jsonf(self, data: Dict[str, Any], filename: str) -> None:
"""To log the input data as json file artifact."""
self.mlflow.log_dict(
data, os.path.join(self.dir, f"{filename}.json"), run_id=self.run_id
)
def table(self, name: str, dataframe: Any) -> None:
"""To log the input pandas dataframe as a html table"""
self.html(dataframe.to_html(), f"table_{name}")
def html(self, html: str, filename: str) -> None:
"""To log the input html string as html file artifact."""
self.mlflow.log_text(
html, os.path.join(self.dir, f"{filename}.html"), run_id=self.run_id
)
def text(self, text: str, filename: str) -> None:
"""To log the input text as text file artifact."""
self.mlflow.log_text(
text, os.path.join(self.dir, f"{filename}.txt"), run_id=self.run_id
)
def artifact(self, path: str) -> None:
"""To upload the file from given path as artifact."""
self.mlflow.log_artifact(path, run_id=self.run_id)
def langchain_artifact(self, chain: Any) -> None:
self.mlflow.langchain.log_model(chain, "langchain-model", run_id=self.run_id)
class MlflowCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
"""Callback Handler that logs metrics and artifacts to mlflow server.
Parameters:
name (str): Name of the run.
experiment (str): Name of the experiment.
tags (dict): Tags to be attached for the run.
tracking_uri (str): MLflow tracking server uri.
This handler will utilize the associated callback method called and formats
the input of each callback function with metadata regarding the state of LLM run,
and adds the response to the list of records for both the {method}_records and
action. It then logs the response to mlflow server.
"""
def __init__(
self,
name: Optional[str] = "langchainrun-%",
experiment: Optional[str] = "langchain",
tags: Optional[Dict] = None,
tracking_uri: Optional[str] = None,
run_id: Optional[str] = None,
artifacts_dir: str = "",
) -> None:
"""Initialize callback handler."""
import_pandas()
import_mlflow()
super().__init__()
self.name = name
self.experiment = experiment
self.tags = tags or {}
self.tracking_uri = tracking_uri
self.run_id = run_id
self.artifacts_dir = artifacts_dir
self.temp_dir = tempfile.TemporaryDirectory()
self.mlflg = MlflowLogger(
tracking_uri=self.tracking_uri,
experiment_name=self.experiment,
run_name=self.name,
run_tags=self.tags,
run_id=self.run_id,
artifacts_dir=self.artifacts_dir,
)
self.action_records: list = []
self.nlp = None
try:
spacy = import_spacy()
except ImportError as e:
logger.warning(e.msg)
else:
try:
self.nlp = spacy.load("en_core_web_sm")
except OSError:
logger.warning(
"Run `python -m spacy download en_core_web_sm` "
"to download en_core_web_sm model for text visualization."
)
try:
self.textstat = import_textstat()
except ImportError as e:
logger.warning(e.msg)
self.textstat = None
self.metrics = {key: 0 for key in mlflow_callback_metrics()}
self.records: Dict[str, Any] = {
"on_llm_start_records": [],
"on_llm_token_records": [],
"on_llm_end_records": [],
"on_chain_start_records": [],
"on_chain_end_records": [],
"on_tool_start_records": [],
"on_tool_end_records": [],
"on_text_records": [],
"on_agent_finish_records": [],
"on_agent_action_records": [],
"on_retriever_start_records": [],
"on_retriever_end_records": [],
"action_records": [],
}
def _reset(self) -> None:
for k, v in self.metrics.items():
self.metrics[k] = 0
for k, v in self.records.items():
self.records[k] = []
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Run when LLM starts."""
self.metrics["step"] += 1
self.metrics["llm_starts"] += 1
self.metrics["starts"] += 1
llm_starts = self.metrics["llm_starts"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_llm_start"})
resp.update(flatten_dict(serialized))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
for idx, prompt in enumerate(prompts):
prompt_resp = deepcopy(resp)
prompt_resp["prompt"] = prompt
self.records["on_llm_start_records"].append(prompt_resp)
self.records["action_records"].append(prompt_resp)
self.mlflg.jsonf(prompt_resp, f"llm_start_{llm_starts}_prompt_{idx}")
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run when LLM generates a new token."""
self.metrics["step"] += 1
self.metrics["llm_streams"] += 1
llm_streams = self.metrics["llm_streams"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_llm_new_token", "token": token})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_llm_token_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"llm_new_tokens_{llm_streams}")
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Run when LLM ends running."""
self.metrics["step"] += 1
self.metrics["llm_ends"] += 1
self.metrics["ends"] += 1
llm_ends = self.metrics["llm_ends"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_llm_end"})
resp.update(flatten_dict(response.llm_output or {}))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
for generations in response.generations:
for idx, generation in enumerate(generations):
generation_resp = deepcopy(resp)
generation_resp.update(flatten_dict(generation.dict()))
generation_resp.update(
analyze_text(
generation.text,
nlp=self.nlp,
textstat=self.textstat,
)
)
if "text_complexity_metrics" in generation_resp:
complexity_metrics: Dict[str, float] = generation_resp.pop(
"text_complexity_metrics"
)
self.mlflg.metrics(
complexity_metrics,
step=self.metrics["step"],
)
self.records["on_llm_end_records"].append(generation_resp)
self.records["action_records"].append(generation_resp)
self.mlflg.jsonf(resp, f"llm_end_{llm_ends}_generation_{idx}")
if "dependency_tree" in generation_resp:
dependency_tree = generation_resp["dependency_tree"]
self.mlflg.html(
dependency_tree, "dep-" + hash_string(generation.text)
)
if "entities" in generation_resp:
entities = generation_resp["entities"]
self.mlflg.html(entities, "ent-" + hash_string(generation.text))
def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
"""Run when LLM errors."""
self.metrics["step"] += 1
self.metrics["errors"] += 1
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Run when chain starts running."""
self.metrics["step"] += 1
self.metrics["chain_starts"] += 1
self.metrics["starts"] += 1
chain_starts = self.metrics["chain_starts"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_chain_start"})
resp.update(flatten_dict(serialized))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
if isinstance(inputs, dict):
chain_input = ",".join([f"{k}={v}" for k, v in inputs.items()])
elif isinstance(inputs, list):
chain_input = ",".join([str(input) for input in inputs])
else:
chain_input = str(inputs)
input_resp = deepcopy(resp)
input_resp["inputs"] = chain_input
self.records["on_chain_start_records"].append(input_resp)
self.records["action_records"].append(input_resp)
self.mlflg.jsonf(input_resp, f"chain_start_{chain_starts}")
def on_chain_end(
self, outputs: Union[Dict[str, Any], str, List[str]], **kwargs: Any
) -> None:
"""Run when chain ends running."""
self.metrics["step"] += 1
self.metrics["chain_ends"] += 1
self.metrics["ends"] += 1
chain_ends = self.metrics["chain_ends"]
resp: Dict[str, Any] = {}
if isinstance(outputs, dict):
chain_output = ",".join([f"{k}={v}" for k, v in outputs.items()])
elif isinstance(outputs, list):
chain_output = ",".join(map(str, outputs))
else:
chain_output = str(outputs)
resp.update({"action": "on_chain_end", "outputs": chain_output})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_chain_end_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"chain_end_{chain_ends}")
def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
"""Run when chain errors."""
self.metrics["step"] += 1
self.metrics["errors"] += 1
def on_tool_start(
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
) -> None:
"""Run when tool starts running."""
self.metrics["step"] += 1
self.metrics["tool_starts"] += 1
self.metrics["starts"] += 1
tool_starts = self.metrics["tool_starts"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_tool_start", "input_str": input_str})
resp.update(flatten_dict(serialized))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_tool_start_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"tool_start_{tool_starts}")
def on_tool_end(self, output: Any, **kwargs: Any) -> None:
"""Run when tool ends running."""
output = str(output)
self.metrics["step"] += 1
self.metrics["tool_ends"] += 1
self.metrics["ends"] += 1
tool_ends = self.metrics["tool_ends"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_tool_end", "output": output})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_tool_end_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"tool_end_{tool_ends}")
def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
"""Run when tool errors."""
self.metrics["step"] += 1
self.metrics["errors"] += 1
def on_text(self, text: str, **kwargs: Any) -> None:
"""
Run when text is received.
"""
self.metrics["step"] += 1
self.metrics["text_ctr"] += 1
text_ctr = self.metrics["text_ctr"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_text", "text": text})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_text_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"on_text_{text_ctr}")
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
"""Run when agent ends running."""
self.metrics["step"] += 1
self.metrics["agent_ends"] += 1
self.metrics["ends"] += 1
agent_ends = self.metrics["agent_ends"]
resp: Dict[str, Any] = {}
resp.update(
{
"action": "on_agent_finish",
"output": finish.return_values["output"],
"log": finish.log,
}
)
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_agent_finish_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"agent_finish_{agent_ends}")
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Run on agent action."""
self.metrics["step"] += 1
self.metrics["tool_starts"] += 1
self.metrics["starts"] += 1
tool_starts = self.metrics["tool_starts"]
resp: Dict[str, Any] = {}
resp.update(
{
"action": "on_agent_action",
"tool": action.tool,
"tool_input": action.tool_input,
"log": action.log,
}
)
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_agent_action_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"agent_action_{tool_starts}")
def on_retriever_start(
self,
serialized: Dict[str, Any],
query: str,
**kwargs: Any,
) -> Any:
"""Run when Retriever starts running."""
self.metrics["step"] += 1
self.metrics["retriever_starts"] += 1
self.metrics["starts"] += 1
retriever_starts = self.metrics["retriever_starts"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_retriever_start", "query": query})
resp.update(flatten_dict(serialized))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_retriever_start_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"retriever_start_{retriever_starts}")
def on_retriever_end(
self,
documents: Sequence[Document],
**kwargs: Any,
) -> Any:
"""Run when Retriever ends running."""
self.metrics["step"] += 1
self.metrics["retriever_ends"] += 1
self.metrics["ends"] += 1
retriever_ends = self.metrics["retriever_ends"]
resp: Dict[str, Any] = {}
retriever_documents = [
{
"page_content": doc.page_content,
"metadata": {
k: (
str(v)
if not isinstance(v, list)
else ",".join(str(x) for x in v)
)
for k, v in doc.metadata.items()
},
}
for doc in documents
]
resp.update({"action": "on_retriever_end", "documents": retriever_documents})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_retriever_end_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"retriever_end_{retriever_ends}")
def on_retriever_error(self, error: BaseException, **kwargs: Any) -> Any:
"""Run when Retriever errors."""
self.metrics["step"] += 1
self.metrics["errors"] += 1
def _create_session_analysis_df(self) -> Any:
"""Create a dataframe with all the information from the session."""
pd = import_pandas()
on_llm_start_records_df = pd.DataFrame(self.records["on_llm_start_records"])
on_llm_end_records_df = pd.DataFrame(self.records["on_llm_end_records"])
llm_input_columns = ["step", "prompt"]
if "name" in on_llm_start_records_df.columns:
llm_input_columns.append("name")
elif "id" in on_llm_start_records_df.columns:
# id is llm class's full import path. For example:
# ["langchain", "llms", "openai", "AzureOpenAI"]
on_llm_start_records_df["name"] = on_llm_start_records_df["id"].apply(
lambda id_: id_[-1]
)
llm_input_columns.append("name")
llm_input_prompts_df = (
on_llm_start_records_df[llm_input_columns]
.dropna(axis=1)
.rename({"step": "prompt_step"}, axis=1)
)
complexity_metrics_columns = (
get_text_complexity_metrics() if self.textstat is not None else []
)
visualizations_columns = (
["dependency_tree", "entities"] if self.nlp is not None else []
)
token_usage_columns = [
"token_usage_total_tokens",
"token_usage_prompt_tokens",
"token_usage_completion_tokens",
]
token_usage_columns = [
x for x in token_usage_columns if x in on_llm_end_records_df.columns
]
llm_outputs_df = (
on_llm_end_records_df[
[
"step",
"text",
]
+ token_usage_columns
+ complexity_metrics_columns
+ visualizations_columns
]
.dropna(axis=1)
.rename({"step": "output_step", "text": "output"}, axis=1)
)
session_analysis_df = pd.concat([llm_input_prompts_df, llm_outputs_df], axis=1)
session_analysis_df["chat_html"] = session_analysis_df[
["prompt", "output"]
].apply(
lambda row: construct_html_from_prompt_and_generation(
row["prompt"], row["output"]
),
axis=1,
)
return session_analysis_df
def _contain_llm_records(self) -> bool:
return bool(self.records["on_llm_start_records"])
def flush_tracker(self, langchain_asset: Any = None, finish: bool = False) -> None:
pd = import_pandas()
self.mlflg.table("action_records", pd.DataFrame(self.records["action_records"]))
if self._contain_llm_records():
session_analysis_df = self._create_session_analysis_df()
chat_html = session_analysis_df.pop("chat_html")
chat_html = chat_html.replace("\n", "", regex=True)
self.mlflg.table("session_analysis", pd.DataFrame(session_analysis_df))
self.mlflg.html("".join(chat_html.tolist()), "chat_html")
if langchain_asset:
# To avoid circular import error
# mlflow only supports LLMChain asset
if "langchain.chains.llm.LLMChain" in str(type(langchain_asset)):
self.mlflg.langchain_artifact(langchain_asset)
else:
langchain_asset_path = str(Path(self.temp_dir.name, "model.json"))
try:
langchain_asset.save(langchain_asset_path)
self.mlflg.artifact(langchain_asset_path)
except ValueError:
try:
langchain_asset.save_agent(langchain_asset_path)
self.mlflg.artifact(langchain_asset_path)
except AttributeError:
print("Could not save model.") # noqa: T201
traceback.print_exc()
pass
except NotImplementedError:
print("Could not save model.") # noqa: T201
traceback.print_exc()
pass
except NotImplementedError:
print("Could not save model.") # noqa: T201
traceback.print_exc()
pass
if finish:
self.mlflg.finish_run()
self._reset()
|