Spaces:
Runtime error
Runtime error
File size: 11,430 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import time
from typing import Any, Dict, List, Optional
from uuid import UUID
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.outputs import LLMResult
from langchain_core.utils import guard_import
from langchain_community.callbacks.utils import import_pandas
# Define constants
# LLMResult keys
TOKEN_USAGE = "token_usage"
TOTAL_TOKENS = "total_tokens"
PROMPT_TOKENS = "prompt_tokens"
COMPLETION_TOKENS = "completion_tokens"
RUN_ID = "run_id"
MODEL_NAME = "model_name"
GOOD = "good"
BAD = "bad"
NEUTRAL = "neutral"
SUCCESS = "success"
FAILURE = "failure"
# Default values
DEFAULT_MAX_TOKEN = 65536
DEFAULT_MAX_DURATION = 120000
# Fiddler specific constants
PROMPT = "prompt"
RESPONSE = "response"
CONTEXT = "context"
DURATION = "duration"
FEEDBACK = "feedback"
LLM_STATUS = "llm_status"
FEEDBACK_POSSIBLE_VALUES = [GOOD, BAD, NEUTRAL]
# Define a dataset dictionary
_dataset_dict = {
PROMPT: ["fiddler"] * 10,
RESPONSE: ["fiddler"] * 10,
CONTEXT: ["fiddler"] * 10,
FEEDBACK: ["good"] * 10,
LLM_STATUS: ["success"] * 10,
MODEL_NAME: ["fiddler"] * 10,
RUN_ID: ["123e4567-e89b-12d3-a456-426614174000"] * 10,
TOTAL_TOKENS: [0, DEFAULT_MAX_TOKEN] * 5,
PROMPT_TOKENS: [0, DEFAULT_MAX_TOKEN] * 5,
COMPLETION_TOKENS: [0, DEFAULT_MAX_TOKEN] * 5,
DURATION: [1, DEFAULT_MAX_DURATION] * 5,
}
def import_fiddler() -> Any:
"""Import the fiddler python package and raise an error if it is not installed."""
return guard_import("fiddler", pip_name="fiddler-client")
# First, define custom callback handler implementations
class FiddlerCallbackHandler(BaseCallbackHandler):
def __init__(
self,
url: str,
org: str,
project: str,
model: str,
api_key: str,
) -> None:
"""
Initialize Fiddler callback handler.
Args:
url: Fiddler URL (e.g. https://demo.fiddler.ai).
Make sure to include the protocol (http/https).
org: Fiddler organization id
project: Fiddler project name to publish events to
model: Fiddler model name to publish events to
api_key: Fiddler authentication token
"""
super().__init__()
# Initialize Fiddler client and other necessary properties
self.fdl = import_fiddler()
self.pd = import_pandas()
self.url = url
self.org = org
self.project = project
self.model = model
self.api_key = api_key
self._df = self.pd.DataFrame(_dataset_dict)
self.run_id_prompts: Dict[UUID, List[str]] = {}
self.run_id_response: Dict[UUID, List[str]] = {}
self.run_id_starttime: Dict[UUID, int] = {}
# Initialize Fiddler client here
self.fiddler_client = self.fdl.FiddlerApi(url, org_id=org, auth_token=api_key)
if self.project not in self.fiddler_client.get_project_names():
print( # noqa: T201
f"adding project {self.project}." "This only has to be done once."
)
try:
self.fiddler_client.add_project(self.project)
except Exception as e:
print( # noqa: T201
f"Error adding project {self.project}:"
"{e}. Fiddler integration will not work."
)
raise e
dataset_info = self.fdl.DatasetInfo.from_dataframe(
self._df, max_inferred_cardinality=0
)
# Set feedback column to categorical
for i in range(len(dataset_info.columns)):
if dataset_info.columns[i].name == FEEDBACK:
dataset_info.columns[i].data_type = self.fdl.DataType.CATEGORY
dataset_info.columns[i].possible_values = FEEDBACK_POSSIBLE_VALUES
elif dataset_info.columns[i].name == LLM_STATUS:
dataset_info.columns[i].data_type = self.fdl.DataType.CATEGORY
dataset_info.columns[i].possible_values = [SUCCESS, FAILURE]
if self.model not in self.fiddler_client.get_model_names(self.project):
if self.model not in self.fiddler_client.get_dataset_names(self.project):
print( # noqa: T201
f"adding dataset {self.model} to project {self.project}."
"This only has to be done once."
)
try:
self.fiddler_client.upload_dataset(
project_id=self.project,
dataset_id=self.model,
dataset={"train": self._df},
info=dataset_info,
)
except Exception as e:
print( # noqa: T201
f"Error adding dataset {self.model}: {e}."
"Fiddler integration will not work."
)
raise e
model_info = self.fdl.ModelInfo.from_dataset_info(
dataset_info=dataset_info,
dataset_id="train",
model_task=self.fdl.ModelTask.LLM,
features=[PROMPT, CONTEXT, RESPONSE],
target=FEEDBACK,
metadata_cols=[
RUN_ID,
TOTAL_TOKENS,
PROMPT_TOKENS,
COMPLETION_TOKENS,
MODEL_NAME,
DURATION,
],
custom_features=self.custom_features,
)
print( # noqa: T201
f"adding model {self.model} to project {self.project}."
"This only has to be done once."
)
try:
self.fiddler_client.add_model(
project_id=self.project,
dataset_id=self.model,
model_id=self.model,
model_info=model_info,
)
except Exception as e:
print( # noqa: T201
f"Error adding model {self.model}: {e}."
"Fiddler integration will not work."
)
raise e
@property
def custom_features(self) -> list:
"""
Define custom features for the model to automatically enrich the data with.
Here, we enable the following enrichments:
- Automatic Embedding generation for prompt and response
- Text Statistics such as:
- Automated Readability Index
- Coleman Liau Index
- Dale Chall Readability Score
- Difficult Words
- Flesch Reading Ease
- Flesch Kincaid Grade
- Gunning Fog
- Linsear Write Formula
- PII - Personal Identifiable Information
- Sentiment Analysis
"""
return [
self.fdl.Enrichment(
name="Prompt Embedding",
enrichment="embedding",
columns=[PROMPT],
),
self.fdl.TextEmbedding(
name="Prompt CF",
source_column=PROMPT,
column="Prompt Embedding",
),
self.fdl.Enrichment(
name="Response Embedding",
enrichment="embedding",
columns=[RESPONSE],
),
self.fdl.TextEmbedding(
name="Response CF",
source_column=RESPONSE,
column="Response Embedding",
),
self.fdl.Enrichment(
name="Text Statistics",
enrichment="textstat",
columns=[PROMPT, RESPONSE],
config={
"statistics": [
"automated_readability_index",
"coleman_liau_index",
"dale_chall_readability_score",
"difficult_words",
"flesch_reading_ease",
"flesch_kincaid_grade",
"gunning_fog",
"linsear_write_formula",
]
},
),
self.fdl.Enrichment(
name="PII",
enrichment="pii",
columns=[PROMPT, RESPONSE],
),
self.fdl.Enrichment(
name="Sentiment",
enrichment="sentiment",
columns=[PROMPT, RESPONSE],
),
]
def _publish_events(
self,
run_id: UUID,
prompt_responses: List[str],
duration: int,
llm_status: str,
model_name: Optional[str] = "",
token_usage_dict: Optional[Dict[str, Any]] = None,
) -> None:
"""
Publish events to fiddler
"""
prompt_count = len(self.run_id_prompts[run_id])
df = self.pd.DataFrame(
{
PROMPT: self.run_id_prompts[run_id],
RESPONSE: prompt_responses,
RUN_ID: [str(run_id)] * prompt_count,
DURATION: [duration] * prompt_count,
LLM_STATUS: [llm_status] * prompt_count,
MODEL_NAME: [model_name] * prompt_count,
}
)
if token_usage_dict:
for key, value in token_usage_dict.items():
df[key] = [value] * prompt_count if isinstance(value, int) else value
try:
if df.shape[0] > 1:
self.fiddler_client.publish_events_batch(self.project, self.model, df)
else:
df_dict = df.to_dict(orient="records")
self.fiddler_client.publish_event(
self.project, self.model, event=df_dict[0]
)
except Exception as e:
print( # noqa: T201
f"Error publishing events to fiddler: {e}. continuing..."
)
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> Any:
run_id = kwargs[RUN_ID]
self.run_id_prompts[run_id] = prompts
self.run_id_starttime[run_id] = int(time.time() * 1000)
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
flattened_llmresult = response.flatten()
run_id = kwargs[RUN_ID]
run_duration = int(time.time() * 1000) - self.run_id_starttime[run_id]
model_name = ""
token_usage_dict = {}
if isinstance(response.llm_output, dict):
token_usage_dict = {
k: v
for k, v in response.llm_output.items()
if k in [TOTAL_TOKENS, PROMPT_TOKENS, COMPLETION_TOKENS]
}
model_name = response.llm_output.get(MODEL_NAME, "")
prompt_responses = [
llmresult.generations[0][0].text for llmresult in flattened_llmresult
]
self._publish_events(
run_id,
prompt_responses,
run_duration,
SUCCESS,
model_name,
token_usage_dict,
)
def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
run_id = kwargs[RUN_ID]
duration = int(time.time() * 1000) - self.run_id_starttime[run_id]
self._publish_events(
run_id, [""] * len(self.run_id_prompts[run_id]), duration, FAILURE
)
|