File size: 2,684 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from typing import Any, List, Optional

import aiohttp
import requests
from langchain_core.callbacks import (
    AsyncCallbackManagerForRetrieverRun,
    CallbackManagerForRetrieverRun,
)
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever


class ChaindeskRetriever(BaseRetriever):
    """`Chaindesk API` retriever."""

    datastore_url: str
    top_k: Optional[int]
    api_key: Optional[str]

    def __init__(
        self,
        datastore_url: str,
        top_k: Optional[int] = None,
        api_key: Optional[str] = None,
    ):
        self.datastore_url = datastore_url
        self.api_key = api_key
        self.top_k = top_k

    def _get_relevant_documents(
        self,
        query: str,
        *,
        run_manager: CallbackManagerForRetrieverRun,
        **kwargs: Any,
    ) -> List[Document]:
        response = requests.post(
            self.datastore_url,
            json={
                "query": query,
                **({"topK": self.top_k} if self.top_k is not None else {}),
            },
            headers={
                "Content-Type": "application/json",
                **(
                    {"Authorization": f"Bearer {self.api_key}"}
                    if self.api_key is not None
                    else {}
                ),
            },
        )
        data = response.json()
        return [
            Document(
                page_content=r["text"],
                metadata={"source": r["source"], "score": r["score"]},
            )
            for r in data["results"]
        ]

    async def _aget_relevant_documents(
        self,
        query: str,
        *,
        run_manager: AsyncCallbackManagerForRetrieverRun,
        **kwargs: Any,
    ) -> List[Document]:
        async with aiohttp.ClientSession() as session:
            async with session.request(
                "POST",
                self.datastore_url,
                json={
                    "query": query,
                    **({"topK": self.top_k} if self.top_k is not None else {}),
                },
                headers={
                    "Content-Type": "application/json",
                    **(
                        {"Authorization": f"Bearer {self.api_key}"}
                        if self.api_key is not None
                        else {}
                    ),
                },
            ) as response:
                data = await response.json()
        return [
            Document(
                page_content=r["text"],
                metadata={"source": r["source"], "score": r["score"]},
            )
            for r in data["results"]
        ]