File size: 8,657 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# flake8: noqa
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Union
from langchain_core.pydantic_v1 import root_validator
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import LLM
from langchain_community.llms.utils import enforce_stop_tokens
from langchain_core.outputs import GenerationChunk


class DeepSparse(LLM):
    """Neural Magic DeepSparse LLM interface.
    To use, you should have the ``deepsparse`` or ``deepsparse-nightly``
    python package installed. See https://github.com/neuralmagic/deepsparse
    This interface let's you deploy optimized LLMs straight from the
    [SparseZoo](https://sparsezoo.neuralmagic.com/?useCase=text_generation)
    Example:
        .. code-block:: python
            from langchain_community.llms import DeepSparse
            llm = DeepSparse(model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none")
    """  # noqa: E501

    pipeline: Any  #: :meta private:

    model: str
    """The path to a model file or directory or the name of a SparseZoo model stub."""

    model_config: Optional[Dict[str, Any]] = None
    """Keyword arguments passed to the pipeline construction.
    Common parameters are sequence_length, prompt_sequence_length"""

    generation_config: Union[None, str, Dict] = None
    """GenerationConfig dictionary consisting of parameters used to control
    sequences generated for each prompt. Common parameters are:
    max_length, max_new_tokens, num_return_sequences, output_scores,
    top_p, top_k, repetition_penalty."""

    streaming: bool = False
    """Whether to stream the results, token by token."""

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        """Get the identifying parameters."""
        return {
            "model": self.model,
            "model_config": self.model_config,
            "generation_config": self.generation_config,
            "streaming": self.streaming,
        }

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "deepsparse"

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that ``deepsparse`` package is installed."""
        try:
            from deepsparse import Pipeline
        except ImportError:
            raise ImportError(
                "Could not import `deepsparse` package. "
                "Please install it with `pip install deepsparse[llm]`"
            )

        model_config = values["model_config"] or {}

        values["pipeline"] = Pipeline.create(
            task="text_generation",
            model_path=values["model"],
            **model_config,
        )
        return values

    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        """Generate text from a prompt.
        Args:
            prompt: The prompt to generate text from.
            stop: A list of strings to stop generation when encountered.
        Returns:
            The generated text.
        Example:
            .. code-block:: python
                from langchain_community.llms import DeepSparse
                llm = DeepSparse(model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none")
                llm.invoke("Tell me a joke.")
        """
        if self.streaming:
            combined_output = ""
            for chunk in self._stream(
                prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
            ):
                combined_output += chunk.text
            text = combined_output
        else:
            text = (
                self.pipeline(sequences=prompt, **self.generation_config)
                .generations[0]
                .text
            )

        if stop is not None:
            text = enforce_stop_tokens(text, stop)

        return text

    async def _acall(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        """Generate text from a prompt.
        Args:
            prompt: The prompt to generate text from.
            stop: A list of strings to stop generation when encountered.
        Returns:
            The generated text.
        Example:
            .. code-block:: python
                from langchain_community.llms import DeepSparse
                llm = DeepSparse(model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none")
                llm.invoke("Tell me a joke.")
        """
        if self.streaming:
            combined_output = ""
            async for chunk in self._astream(
                prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
            ):
                combined_output += chunk.text
            text = combined_output
        else:
            text = (
                self.pipeline(sequences=prompt, **self.generation_config)
                .generations[0]
                .text
            )

        if stop is not None:
            text = enforce_stop_tokens(text, stop)

        return text

    def _stream(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[GenerationChunk]:
        """Yields results objects as they are generated in real time.
        It also calls the callback manager's on_llm_new_token event with
        similar parameters to the OpenAI LLM class method of the same name.
        Args:
            prompt: The prompt to pass into the model.
            stop: Optional list of stop words to use when generating.
        Returns:
            A generator representing the stream of tokens being generated.
        Yields:
            A dictionary like object containing a string token.
        Example:
            .. code-block:: python
                from langchain_community.llms import DeepSparse
                llm = DeepSparse(
                    model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none",
                    streaming=True
                )
                for chunk in llm.stream("Tell me a joke",
                        stop=["'","\n"]):
                    print(chunk, end='', flush=True)  # noqa: T201
        """
        inference = self.pipeline(
            sequences=prompt, streaming=True, **self.generation_config
        )
        for token in inference:
            chunk = GenerationChunk(text=token.generations[0].text)
            yield chunk

            if run_manager:
                run_manager.on_llm_new_token(token=chunk.text)

    async def _astream(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> AsyncIterator[GenerationChunk]:
        """Yields results objects as they are generated in real time.
        It also calls the callback manager's on_llm_new_token event with
        similar parameters to the OpenAI LLM class method of the same name.
        Args:
            prompt: The prompt to pass into the model.
            stop: Optional list of stop words to use when generating.
        Returns:
            A generator representing the stream of tokens being generated.
        Yields:
            A dictionary like object containing a string token.
        Example:
            .. code-block:: python
                from langchain_community.llms import DeepSparse
                llm = DeepSparse(
                    model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none",
                    streaming=True
                )
                for chunk in llm.stream("Tell me a joke",
                        stop=["'","\n"]):
                    print(chunk, end='', flush=True)  # noqa: T201
        """
        inference = self.pipeline(
            sequences=prompt, streaming=True, **self.generation_config
        )
        for token in inference:
            chunk = GenerationChunk(text=token.generations[0].text)
            yield chunk

            if run_manager:
                await run_manager.on_llm_new_token(token=chunk.text)