Spaces:
Runtime error
Runtime error
File size: 20,603 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
import json
import urllib.request
import warnings
from abc import abstractmethod
from enum import Enum
from typing import Any, Dict, List, Mapping, Optional
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, LLMResult
from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator, validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
DEFAULT_TIMEOUT = 50
class AzureMLEndpointClient(object):
"""AzureML Managed Endpoint client."""
def __init__(
self,
endpoint_url: str,
endpoint_api_key: str,
deployment_name: str = "",
timeout: int = DEFAULT_TIMEOUT,
) -> None:
"""Initialize the class."""
if not endpoint_api_key or not endpoint_url:
raise ValueError(
"""A key/token and REST endpoint should
be provided to invoke the endpoint"""
)
self.endpoint_url = endpoint_url
self.endpoint_api_key = endpoint_api_key
self.deployment_name = deployment_name
self.timeout = timeout
def call(
self,
body: bytes,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> bytes:
"""call."""
# The azureml-model-deployment header will force the request to go to a
# specific deployment. Remove this header to have the request observe the
# endpoint traffic rules.
headers = {
"Content-Type": "application/json",
"Authorization": ("Bearer " + self.endpoint_api_key),
}
if self.deployment_name != "":
headers["azureml-model-deployment"] = self.deployment_name
req = urllib.request.Request(self.endpoint_url, body, headers)
response = urllib.request.urlopen(
req, timeout=kwargs.get("timeout", self.timeout)
)
result = response.read()
return result
class AzureMLEndpointApiType(str, Enum):
"""Azure ML endpoints API types. Use `dedicated` for models deployed in hosted
infrastructure (also known as Online Endpoints in Azure Machine Learning),
or `serverless` for models deployed as a service with a
pay-as-you-go billing or PTU.
"""
dedicated = "dedicated"
realtime = "realtime" #: Deprecated
serverless = "serverless"
class ContentFormatterBase:
"""Transform request and response of AzureML endpoint to match with
required schema.
"""
"""
Example:
.. code-block:: python
class ContentFormatter(ContentFormatterBase):
content_type = "application/json"
accepts = "application/json"
def format_request_payload(
self,
prompt: str,
model_kwargs: Dict,
api_type: AzureMLEndpointApiType,
) -> bytes:
input_str = json.dumps(
{
"inputs": {"input_string": [prompt]},
"parameters": model_kwargs,
}
)
return str.encode(input_str)
def format_response_payload(
self, output: str, api_type: AzureMLEndpointApiType
) -> str:
response_json = json.loads(output)
return response_json[0]["0"]
"""
content_type: Optional[str] = "application/json"
"""The MIME type of the input data passed to the endpoint"""
accepts: Optional[str] = "application/json"
"""The MIME type of the response data returned from the endpoint"""
format_error_msg: str = (
"Error while formatting response payload for chat model of type "
" `{api_type}`. Are you using the right formatter for the deployed "
" model and endpoint type?"
)
@staticmethod
def escape_special_characters(prompt: str) -> str:
"""Escapes any special characters in `prompt`"""
escape_map = {
"\\": "\\\\",
'"': '\\"',
"\b": "\\b",
"\f": "\\f",
"\n": "\\n",
"\r": "\\r",
"\t": "\\t",
}
# Replace each occurrence of the specified characters with escaped versions
for escape_sequence, escaped_sequence in escape_map.items():
prompt = prompt.replace(escape_sequence, escaped_sequence)
return prompt
@property
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
"""Supported APIs for the given formatter. Azure ML supports
deploying models using different hosting methods. Each method may have
a different API structure."""
return [AzureMLEndpointApiType.dedicated]
def format_request_payload(
self,
prompt: str,
model_kwargs: Dict,
api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.dedicated,
) -> Any:
"""Formats the request body according to the input schema of
the model. Returns bytes or seekable file like object in the
format specified in the content_type request header.
"""
raise NotImplementedError()
@abstractmethod
def format_response_payload(
self,
output: bytes,
api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.dedicated,
) -> Generation:
"""Formats the response body according to the output
schema of the model. Returns the data type that is
received from the response.
"""
class GPT2ContentFormatter(ContentFormatterBase):
"""Content handler for GPT2"""
@property
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
return [AzureMLEndpointApiType.dedicated]
def format_request_payload( # type: ignore[override]
self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType
) -> bytes:
prompt = ContentFormatterBase.escape_special_characters(prompt)
request_payload = json.dumps(
{"inputs": {"input_string": [f'"{prompt}"']}, "parameters": model_kwargs}
)
return str.encode(request_payload)
def format_response_payload( # type: ignore[override]
self, output: bytes, api_type: AzureMLEndpointApiType
) -> Generation:
try:
choice = json.loads(output)[0]["0"]
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e # type: ignore[union-attr]
return Generation(text=choice)
class OSSContentFormatter(GPT2ContentFormatter):
"""Deprecated: Kept for backwards compatibility
Content handler for LLMs from the OSS catalog."""
content_formatter: Any = None
def __init__(self) -> None:
super().__init__()
warnings.warn(
"""`OSSContentFormatter` will be deprecated in the future.
Please use `GPT2ContentFormatter` instead.
"""
)
class HFContentFormatter(ContentFormatterBase):
"""Content handler for LLMs from the HuggingFace catalog."""
@property
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
return [AzureMLEndpointApiType.dedicated]
def format_request_payload( # type: ignore[override]
self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType
) -> bytes:
ContentFormatterBase.escape_special_characters(prompt)
request_payload = json.dumps(
{"inputs": [f'"{prompt}"'], "parameters": model_kwargs}
)
return str.encode(request_payload)
def format_response_payload( # type: ignore[override]
self, output: bytes, api_type: AzureMLEndpointApiType
) -> Generation:
try:
choice = json.loads(output)[0]["0"]["generated_text"]
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e # type: ignore[union-attr]
return Generation(text=choice)
class DollyContentFormatter(ContentFormatterBase):
"""Content handler for the Dolly-v2-12b model"""
@property
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
return [AzureMLEndpointApiType.dedicated]
def format_request_payload( # type: ignore[override]
self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType
) -> bytes:
prompt = ContentFormatterBase.escape_special_characters(prompt)
request_payload = json.dumps(
{
"input_data": {"input_string": [f'"{prompt}"']},
"parameters": model_kwargs,
}
)
return str.encode(request_payload)
def format_response_payload( # type: ignore[override]
self, output: bytes, api_type: AzureMLEndpointApiType
) -> Generation:
try:
choice = json.loads(output)[0]
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e # type: ignore[union-attr]
return Generation(text=choice)
class CustomOpenAIContentFormatter(ContentFormatterBase):
"""Content formatter for models that use the OpenAI like API scheme."""
@property
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
return [AzureMLEndpointApiType.dedicated, AzureMLEndpointApiType.serverless]
def format_request_payload( # type: ignore[override]
self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType
) -> bytes:
"""Formats the request according to the chosen api"""
prompt = ContentFormatterBase.escape_special_characters(prompt)
if api_type in [
AzureMLEndpointApiType.dedicated,
AzureMLEndpointApiType.realtime,
]:
request_payload = json.dumps(
{
"input_data": {
"input_string": [f'"{prompt}"'],
"parameters": model_kwargs,
}
}
)
elif api_type == AzureMLEndpointApiType.serverless:
request_payload = json.dumps({"prompt": prompt, **model_kwargs})
else:
raise ValueError(
f"`api_type` {api_type} is not supported by this formatter"
)
return str.encode(request_payload)
def format_response_payload( # type: ignore[override]
self, output: bytes, api_type: AzureMLEndpointApiType
) -> Generation:
"""Formats response"""
if api_type in [
AzureMLEndpointApiType.dedicated,
AzureMLEndpointApiType.realtime,
]:
try:
choice = json.loads(output)[0]["0"]
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e # type: ignore[union-attr]
return Generation(text=choice)
if api_type == AzureMLEndpointApiType.serverless:
try:
choice = json.loads(output)["choices"][0]
if not isinstance(choice, dict):
raise TypeError(
"Endpoint response is not well formed for a chat "
"model. Expected `dict` but `{type(choice)}` was "
"received."
)
except (KeyError, IndexError, TypeError) as e:
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e # type: ignore[union-attr]
return Generation(
text=choice["text"].strip(),
generation_info=dict(
finish_reason=choice.get("finish_reason"),
logprobs=choice.get("logprobs"),
),
)
raise ValueError(f"`api_type` {api_type} is not supported by this formatter")
class LlamaContentFormatter(CustomOpenAIContentFormatter):
"""Deprecated: Kept for backwards compatibility
Content formatter for Llama."""
content_formatter: Any = None
def __init__(self) -> None:
super().__init__()
warnings.warn(
"""`LlamaContentFormatter` will be deprecated in the future.
Please use `CustomOpenAIContentFormatter` instead.
"""
)
class AzureMLBaseEndpoint(BaseModel):
"""Azure ML Online Endpoint models."""
endpoint_url: str = ""
"""URL of pre-existing Endpoint. Should be passed to constructor or specified as
env var `AZUREML_ENDPOINT_URL`."""
endpoint_api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.dedicated
"""Type of the endpoint being consumed. Possible values are `serverless` for
pay-as-you-go and `dedicated` for dedicated endpoints. """
endpoint_api_key: SecretStr = convert_to_secret_str("")
"""Authentication Key for Endpoint. Should be passed to constructor or specified as
env var `AZUREML_ENDPOINT_API_KEY`."""
deployment_name: str = ""
"""Deployment Name for Endpoint. NOT REQUIRED to call endpoint. Should be passed
to constructor or specified as env var `AZUREML_DEPLOYMENT_NAME`."""
timeout: int = DEFAULT_TIMEOUT
"""Request timeout for calls to the endpoint"""
http_client: Any = None #: :meta private:
max_retries: int = 1
content_formatter: Any = None
"""The content formatter that provides an input and output
transform function to handle formats between the LLM and
the endpoint"""
model_kwargs: Optional[dict] = None
"""Keyword arguments to pass to the model."""
@root_validator(pre=True)
def validate_environ(cls, values: Dict) -> Dict:
values["endpoint_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "endpoint_api_key", "AZUREML_ENDPOINT_API_KEY")
)
values["endpoint_url"] = get_from_dict_or_env(
values, "endpoint_url", "AZUREML_ENDPOINT_URL"
)
values["deployment_name"] = get_from_dict_or_env(
values, "deployment_name", "AZUREML_DEPLOYMENT_NAME", ""
)
values["endpoint_api_type"] = get_from_dict_or_env(
values,
"endpoint_api_type",
"AZUREML_ENDPOINT_API_TYPE",
AzureMLEndpointApiType.dedicated,
)
values["timeout"] = get_from_dict_or_env(
values,
"timeout",
"AZUREML_TIMEOUT",
str(DEFAULT_TIMEOUT),
)
return values
@validator("content_formatter")
def validate_content_formatter(
cls, field_value: Any, values: Dict
) -> ContentFormatterBase:
"""Validate that content formatter is supported by endpoint type."""
endpoint_api_type = values.get("endpoint_api_type")
if endpoint_api_type not in field_value.supported_api_types:
raise ValueError(
f"Content formatter f{type(field_value)} is not supported by this "
f"endpoint. Supported types are {field_value.supported_api_types} "
f"but endpoint is {endpoint_api_type}."
)
return field_value
@validator("endpoint_url")
def validate_endpoint_url(cls, field_value: Any) -> str:
"""Validate that endpoint url is complete."""
if field_value.endswith("/"):
field_value = field_value[:-1]
if field_value.endswith("inference.ml.azure.com"):
raise ValueError(
"`endpoint_url` should contain the full invocation URL including "
"`/score` for `endpoint_api_type='dedicated'` or `/v1/completions` "
"or `/v1/chat/completions` for `endpoint_api_type='serverless'`"
)
return field_value
@validator("endpoint_api_type")
def validate_endpoint_api_type(
cls, field_value: Any, values: Dict
) -> AzureMLEndpointApiType:
"""Validate that endpoint api type is compatible with the URL format."""
endpoint_url = values.get("endpoint_url")
if (
(
field_value == AzureMLEndpointApiType.dedicated
or field_value == AzureMLEndpointApiType.realtime
)
and not endpoint_url.endswith("/score") # type: ignore[union-attr]
):
raise ValueError(
"Endpoints of type `dedicated` should follow the format "
"`https://<your-endpoint>.<your_region>.inference.ml.azure.com/score`."
" If your endpoint URL ends with `/v1/completions` or"
"`/v1/chat/completions`, use `endpoint_api_type='serverless'` instead."
)
if field_value == AzureMLEndpointApiType.serverless and not (
endpoint_url.endswith("/v1/completions") # type: ignore[union-attr]
or endpoint_url.endswith("/v1/chat/completions") # type: ignore[union-attr]
):
raise ValueError(
"Endpoints of type `serverless` should follow the format "
"`https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/chat/completions`"
" or `https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/chat/completions`"
)
return field_value
@validator("http_client", always=True)
def validate_client(cls, field_value: Any, values: Dict) -> AzureMLEndpointClient:
"""Validate that api key and python package exists in environment."""
endpoint_url = values.get("endpoint_url")
endpoint_key = values.get("endpoint_api_key")
deployment_name = values.get("deployment_name")
timeout = values.get("timeout", DEFAULT_TIMEOUT)
http_client = AzureMLEndpointClient(
endpoint_url, # type: ignore
endpoint_key.get_secret_value(), # type: ignore
deployment_name, # type: ignore
timeout, # type: ignore
)
return http_client
class AzureMLOnlineEndpoint(BaseLLM, AzureMLBaseEndpoint):
"""Azure ML Online Endpoint models.
Example:
.. code-block:: python
azure_llm = AzureMLOnlineEndpoint(
endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score",
endpoint_api_type=AzureMLApiType.dedicated,
endpoint_api_key="my-api-key",
timeout=120,
content_formatter=content_formatter,
)
"""
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
**{"deployment_name": self.deployment_name},
**{"model_kwargs": _model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "azureml_endpoint"
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Run the LLM on the given prompts.
Args:
prompts: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = azureml_model.invoke("Tell me a joke.")
"""
_model_kwargs = self.model_kwargs or {}
_model_kwargs.update(kwargs)
if stop:
_model_kwargs["stop"] = stop
generations = []
for prompt in prompts:
request_payload = self.content_formatter.format_request_payload(
prompt, _model_kwargs, self.endpoint_api_type
)
response_payload = self.http_client.call(
body=request_payload, run_manager=run_manager
)
generated_text = self.content_formatter.format_response_payload(
response_payload, self.endpoint_api_type
)
generations.append([generated_text])
return LLMResult(generations=generations)
|