File size: 26,675 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
from __future__ import annotations

import json
import re
from hashlib import md5
from typing import TYPE_CHECKING, Any, Dict, List, NamedTuple, Tuple, Union

from langchain_community.graphs.graph_document import GraphDocument
from langchain_community.graphs.graph_store import GraphStore

if TYPE_CHECKING:
    import psycopg2.extras


class AGEQueryException(Exception):
    """Exception for the AGE queries."""

    def __init__(self, exception: Union[str, Dict]) -> None:
        if isinstance(exception, dict):
            self.message = exception["message"] if "message" in exception else "unknown"
            self.details = exception["details"] if "details" in exception else "unknown"
        else:
            self.message = exception
            self.details = "unknown"

    def get_message(self) -> str:
        return self.message

    def get_details(self) -> Any:
        return self.details


class AGEGraph(GraphStore):
    """
    Apache AGE wrapper for graph operations.

    Args:
        graph_name (str): the name of the graph to connect to or create
        conf (Dict[str, Any]): the pgsql connection config passed directly
            to psycopg2.connect
        create (bool): if True and graph doesn't exist, attempt to create it

    *Security note*: Make sure that the database connection uses credentials
        that are narrowly-scoped to only include necessary permissions.
        Failure to do so may result in data corruption or loss, since the calling
        code may attempt commands that would result in deletion, mutation
        of data if appropriately prompted or reading sensitive data if such
        data is present in the database.
        The best way to guard against such negative outcomes is to (as appropriate)
        limit the permissions granted to the credentials used with this tool.

        See https://python.langchain.com/docs/security for more information.
    """

    # python type mapping for providing readable types to LLM
    types = {
        "str": "STRING",
        "float": "DOUBLE",
        "int": "INTEGER",
        "list": "LIST",
        "dict": "MAP",
        "bool": "BOOLEAN",
    }

    # precompiled regex for checking chars in graph labels
    label_regex = re.compile("[^0-9a-zA-Z]+")

    def __init__(
        self, graph_name: str, conf: Dict[str, Any], create: bool = True
    ) -> None:
        """Create a new AGEGraph instance."""

        self.graph_name = graph_name

        # check that psycopg2 is installed
        try:
            import psycopg2
        except ImportError:
            raise ImportError(
                "Could not import psycopg2 python package. "
                "Please install it with `pip install psycopg2`."
            )

        self.connection = psycopg2.connect(**conf)

        with self._get_cursor() as curs:
            # check if graph with name graph_name exists
            graph_id_query = (
                """SELECT graphid FROM ag_catalog.ag_graph WHERE name = '{}'""".format(
                    graph_name
                )
            )

            curs.execute(graph_id_query)
            data = curs.fetchone()

            # if graph doesn't exist and create is True, create it
            if data is None:
                if create:
                    create_statement = """
                        SELECT ag_catalog.create_graph('{}');
                    """.format(graph_name)

                    try:
                        curs.execute(create_statement)
                        self.connection.commit()
                    except psycopg2.Error as e:
                        raise AGEQueryException(
                            {
                                "message": "Could not create the graph",
                                "detail": str(e),
                            }
                        )

                else:
                    raise Exception(
                        (
                            'Graph "{}" does not exist in the database '
                            + 'and "create" is set to False'
                        ).format(graph_name)
                    )

                curs.execute(graph_id_query)
                data = curs.fetchone()

            # store graph id and refresh the schema
            self.graphid = data.graphid
            self.refresh_schema()

    def _get_cursor(self) -> psycopg2.extras.NamedTupleCursor:
        """
        get cursor, load age extension and set search path
        """

        try:
            import psycopg2.extras
        except ImportError as e:
            raise ImportError(
                "Unable to import psycopg2, please install with "
                "`pip install -U psycopg2`."
            ) from e
        cursor = self.connection.cursor(cursor_factory=psycopg2.extras.NamedTupleCursor)
        cursor.execute("""LOAD 'age';""")
        cursor.execute("""SET search_path = ag_catalog, "$user", public;""")
        return cursor

    def _get_labels(self) -> Tuple[List[str], List[str]]:
        """
        Get all labels of a graph (for both edges and vertices)
        by querying the graph metadata table directly

        Returns
            Tuple[List[str]]: 2 lists, the first containing vertex
                labels and the second containing edge labels
        """

        e_labels_records = self.query(
            """MATCH ()-[e]-() RETURN collect(distinct label(e)) as labels"""
        )
        e_labels = e_labels_records[0]["labels"] if e_labels_records else []

        n_labels_records = self.query(
            """MATCH (n) RETURN collect(distinct label(n)) as labels"""
        )
        n_labels = n_labels_records[0]["labels"] if n_labels_records else []

        return n_labels, e_labels

    def _get_triples(self, e_labels: List[str]) -> List[Dict[str, str]]:
        """
        Get a set of distinct relationship types (as a list of dicts) in the graph
        to be used as context by an llm.

        Args:
            e_labels (List[str]): a list of edge labels to filter for

        Returns:
            List[Dict[str, str]]: relationships as a list of dicts in the format
                "{'start':<from_label>, 'type':<edge_label>, 'end':<from_label>}"
        """

        # age query to get distinct relationship types
        try:
            import psycopg2
        except ImportError as e:
            raise ImportError(
                "Unable to import psycopg2, please install with "
                "`pip install -U psycopg2`."
            ) from e
        triple_query = """
        SELECT * FROM ag_catalog.cypher('{graph_name}', $$
            MATCH (a)-[e:`{e_label}`]->(b)
            WITH a,e,b LIMIT 3000
            RETURN DISTINCT labels(a) AS from, type(e) AS edge, labels(b) AS to
            LIMIT 10
        $$) AS (f agtype, edge agtype, t agtype);
        """

        triple_schema = []

        # iterate desired edge types and add distinct relationship types to result
        with self._get_cursor() as curs:
            for label in e_labels:
                q = triple_query.format(graph_name=self.graph_name, e_label=label)
                try:
                    curs.execute(q)
                    data = curs.fetchall()
                    for d in data:
                        # use json.loads to convert returned
                        # strings to python primitives
                        triple_schema.append(
                            {
                                "start": json.loads(d.f)[0],
                                "type": json.loads(d.edge),
                                "end": json.loads(d.t)[0],
                            }
                        )
                except psycopg2.Error as e:
                    raise AGEQueryException(
                        {
                            "message": "Error fetching triples",
                            "detail": str(e),
                        }
                    )

        return triple_schema

    def _get_triples_str(self, e_labels: List[str]) -> List[str]:
        """
        Get a set of distinct relationship types (as a list of strings) in the graph
        to be used as context by an llm.

        Args:
            e_labels (List[str]): a list of edge labels to filter for

        Returns:
            List[str]: relationships as a list of strings in the format
                "(:`<from_label>`)-[:`<edge_label>`]->(:`<to_label>`)"
        """

        triples = self._get_triples(e_labels)

        return self._format_triples(triples)

    @staticmethod
    def _format_triples(triples: List[Dict[str, str]]) -> List[str]:
        """
        Convert a list of relationships from dictionaries to formatted strings
        to be better readable by an llm

        Args:
            triples (List[Dict[str,str]]): a list relationships in the form
                {'start':<from_label>, 'type':<edge_label>, 'end':<from_label>}

        Returns:
            List[str]: a list of relationships in the form
                "(:`<from_label>`)-[:`<edge_label>`]->(:`<to_label>`)"
        """
        triple_template = "(:`{start}`)-[:`{type}`]->(:`{end}`)"
        triple_schema = [triple_template.format(**triple) for triple in triples]

        return triple_schema

    def _get_node_properties(self, n_labels: List[str]) -> List[Dict[str, Any]]:
        """
        Fetch a list of available node properties by node label to be used
        as context for an llm

        Args:
            n_labels (List[str]): a list of node labels to filter for

        Returns:
            List[Dict[str, Any]]: a list of node labels and
                their corresponding properties in the form
                "{
                    'labels': <node_label>,
                    'properties': [
                        {
                            'property': <property_name>,
                            'type': <property_type>
                        },...
                        ]
                }"
        """
        try:
            import psycopg2
        except ImportError as e:
            raise ImportError(
                "Unable to import psycopg2, please install with "
                "`pip install -U psycopg2`."
            ) from e

        # cypher query to fetch properties of a given label
        node_properties_query = """
        SELECT * FROM ag_catalog.cypher('{graph_name}', $$
            MATCH (a:`{n_label}`)
            RETURN properties(a) AS props
            LIMIT 100
        $$) AS (props agtype);
        """

        node_properties = []
        with self._get_cursor() as curs:
            for label in n_labels:
                q = node_properties_query.format(
                    graph_name=self.graph_name, n_label=label
                )

                try:
                    curs.execute(q)
                except psycopg2.Error as e:
                    raise AGEQueryException(
                        {
                            "message": "Error fetching node properties",
                            "detail": str(e),
                        }
                    )
                data = curs.fetchall()

                # build a set of distinct properties
                s = set({})
                for d in data:
                    # use json.loads to convert to python
                    # primitive and get readable type
                    for k, v in json.loads(d.props).items():
                        s.add((k, self.types[type(v).__name__]))

                np = {
                    "properties": [{"property": k, "type": v} for k, v in s],
                    "labels": label,
                }
                node_properties.append(np)

        return node_properties

    def _get_edge_properties(self, e_labels: List[str]) -> List[Dict[str, Any]]:
        """
        Fetch a list of available edge properties by edge label to be used
        as context for an llm

        Args:
            e_labels (List[str]): a list of edge labels to filter for

        Returns:
            List[Dict[str, Any]]: a list of edge labels
                and their corresponding properties in the form
                "{
                    'labels': <edge_label>,
                    'properties': [
                        {
                            'property': <property_name>,
                            'type': <property_type>
                        },...
                        ]
                }"
        """

        try:
            import psycopg2
        except ImportError as e:
            raise ImportError(
                "Unable to import psycopg2, please install with "
                "`pip install -U psycopg2`."
            ) from e
        # cypher query to fetch properties of a given label
        edge_properties_query = """
        SELECT * FROM ag_catalog.cypher('{graph_name}', $$
            MATCH ()-[e:`{e_label}`]->()
            RETURN properties(e) AS props
            LIMIT 100
        $$) AS (props agtype);
        """
        edge_properties = []
        with self._get_cursor() as curs:
            for label in e_labels:
                q = edge_properties_query.format(
                    graph_name=self.graph_name, e_label=label
                )

                try:
                    curs.execute(q)
                except psycopg2.Error as e:
                    raise AGEQueryException(
                        {
                            "message": "Error fetching edge properties",
                            "detail": str(e),
                        }
                    )
                data = curs.fetchall()

                # build a set of distinct properties
                s = set({})
                for d in data:
                    # use json.loads to convert to python
                    # primitive and get readable type
                    for k, v in json.loads(d.props).items():
                        s.add((k, self.types[type(v).__name__]))

                np = {
                    "properties": [{"property": k, "type": v} for k, v in s],
                    "type": label,
                }
                edge_properties.append(np)

        return edge_properties

    def refresh_schema(self) -> None:
        """
        Refresh the graph schema information by updating the available
        labels, relationships, and properties
        """

        # fetch graph schema information
        n_labels, e_labels = self._get_labels()
        triple_schema = self._get_triples(e_labels)

        node_properties = self._get_node_properties(n_labels)
        edge_properties = self._get_edge_properties(e_labels)

        # update the formatted string representation
        self.schema = f"""
        Node properties are the following:
        {node_properties}
        Relationship properties are the following:
        {edge_properties}
        The relationships are the following:
        {self._format_triples(triple_schema)}
        """

        # update the dictionary representation
        self.structured_schema = {
            "node_props": {el["labels"]: el["properties"] for el in node_properties},
            "rel_props": {el["type"]: el["properties"] for el in edge_properties},
            "relationships": triple_schema,
            "metadata": {},
        }

    @property
    def get_schema(self) -> str:
        """Returns the schema of the Graph"""
        return self.schema

    @property
    def get_structured_schema(self) -> Dict[str, Any]:
        """Returns the structured schema of the Graph"""
        return self.structured_schema

    @staticmethod
    def _get_col_name(field: str, idx: int) -> str:
        """
        Convert a cypher return field to a pgsql select field
        If possible keep the cypher column name, but create a generic name if necessary

        Args:
            field (str): a return field from a cypher query to be formatted for pgsql
            idx (int): the position of the field in the return statement

        Returns:
            str: the field to be used in the pgsql select statement
        """
        # remove white space
        field = field.strip()
        # if an alias is provided for the field, use it
        if " as " in field:
            return field.split(" as ")[-1].strip()
        # if the return value is an unnamed primitive, give it a generic name
        elif field.isnumeric() or field in ("true", "false", "null"):
            return f"column_{idx}"
        # otherwise return the value stripping out some common special chars
        else:
            return field.replace("(", "_").replace(")", "")

    @staticmethod
    def _wrap_query(query: str, graph_name: str) -> str:
        """
        Convert a cypher query to an Apache Age compatible
        sql query by wrapping the cypher query in ag_catalog.cypher,
        casting results to agtype and building a select statement

        Args:
            query (str): a valid cypher query
            graph_name (str): the name of the graph to query

        Returns:
            str: an equivalent pgsql query
        """

        # pgsql template
        template = """SELECT {projection} FROM ag_catalog.cypher('{graph_name}', $$
            {query}
        $$) AS ({fields});"""

        # if there are any returned fields they must be added to the pgsql query
        if "return" in query.lower():
            # parse return statement to identify returned fields
            fields = (
                query.lower()
                .split("return")[-1]
                .split("distinct")[-1]
                .split("order by")[0]
                .split("skip")[0]
                .split("limit")[0]
                .split(",")
            )

            # raise exception if RETURN * is found as we can't resolve the fields
            if "*" in [x.strip() for x in fields]:
                raise ValueError(
                    "AGE graph does not support 'RETURN *'"
                    + " statements in Cypher queries"
                )

            # get pgsql formatted field names
            fields = [
                AGEGraph._get_col_name(field, idx) for idx, field in enumerate(fields)
            ]

            # build resulting pgsql relation
            fields_str = ", ".join(
                [field.split(".")[-1] + " agtype" for field in fields]
            )

        # if no return statement we still need to return a single field of type agtype
        else:
            fields_str = "a agtype"

        select_str = "*"

        return template.format(
            graph_name=graph_name,
            query=query,
            fields=fields_str,
            projection=select_str,
        )

    @staticmethod
    def _record_to_dict(record: NamedTuple) -> Dict[str, Any]:
        """
        Convert a record returned from an age query to a dictionary

        Args:
            record (): a record from an age query result

        Returns:
            Dict[str, Any]: a dictionary representation of the record where
                the dictionary key is the field name and the value is the
                value converted to a python type
        """
        # result holder
        d = {}

        # prebuild a mapping of vertex_id to vertex mappings to be used
        # later to build edges
        vertices = {}
        for k in record._fields:
            v = getattr(record, k)
            # agtype comes back '{key: value}::type' which must be parsed
            if isinstance(v, str) and "::" in v:
                dtype = v.split("::")[-1]
                v = v.split("::")[0]
                if dtype == "vertex":
                    vertex = json.loads(v)
                    vertices[vertex["id"]] = vertex.get("properties")

        # iterate returned fields and parse appropriately
        for k in record._fields:
            v = getattr(record, k)
            if isinstance(v, str) and "::" in v:
                dtype = v.split("::")[-1]
                v = v.split("::")[0]
            else:
                dtype = ""

            if dtype == "vertex":
                d[k] = json.loads(v).get("properties")
            # convert edge from id-label->id by replacing id with node information
            # we only do this if the vertex was also returned in the query
            # this is an attempt to be consistent with neo4j implementation
            elif dtype == "edge":
                edge = json.loads(v)
                d[k] = (
                    vertices.get(edge["start_id"], {}),
                    edge["label"],
                    vertices.get(edge["end_id"], {}),
                )
            else:
                d[k] = json.loads(v) if isinstance(v, str) else v

        return d

    def query(self, query: str, params: dict = {}) -> List[Dict[str, Any]]:
        """
        Query the graph by taking a cypher query, converting it to an
        age compatible query, executing it and converting the result

        Args:
            query (str): a cypher query to be executed
            params (dict): parameters for the query (not used in this implementation)

        Returns:
            List[Dict[str, Any]]: a list of dictionaries containing the result set
        """
        try:
            import psycopg2
        except ImportError as e:
            raise ImportError(
                "Unable to import psycopg2, please install with "
                "`pip install -U psycopg2`."
            ) from e

        # convert cypher query to pgsql/age query
        wrapped_query = self._wrap_query(query, self.graph_name)

        # execute the query, rolling back on an error
        with self._get_cursor() as curs:
            try:
                curs.execute(wrapped_query)
                self.connection.commit()
            except psycopg2.Error as e:
                self.connection.rollback()
                raise AGEQueryException(
                    {
                        "message": "Error executing graph query: {}".format(query),
                        "detail": str(e),
                    }
                )

            data = curs.fetchall()
            if data is None:
                result = []
            # convert to dictionaries
            else:
                result = [self._record_to_dict(d) for d in data]

            return result

    @staticmethod
    def _format_properties(
        properties: Dict[str, Any], id: Union[str, None] = None
    ) -> str:
        """
        Convert a dictionary of properties to a string representation that
        can be used in a cypher query insert/merge statement.

        Args:
            properties (Dict[str,str]): a dictionary containing node/edge properties
            id (Union[str, None]): the id of the node or None if none exists

        Returns:
            str: the properties dictionary as a properly formatted string
        """
        props = []
        # wrap property key in backticks to escape
        for k, v in properties.items():
            prop = f"`{k}`: {json.dumps(v)}"
            props.append(prop)
        if id is not None and "id" not in properties:
            props.append(
                f"id: {json.dumps(id)}" if isinstance(id, str) else f"id: {id}"
            )
        return "{" + ", ".join(props) + "}"

    @staticmethod
    def clean_graph_labels(label: str) -> str:
        """
        remove any disallowed characters from a label and replace with '_'

        Args:
            label (str): the original label

        Returns:
            str: the sanitized version of the label
        """
        return re.sub(AGEGraph.label_regex, "_", label)

    def add_graph_documents(
        self, graph_documents: List[GraphDocument], include_source: bool = False
    ) -> None:
        """
        insert a list of graph documents into the graph

        Args:
            graph_documents (List[GraphDocument]): the list of documents to be inserted
            include_source (bool): if True add nodes for the sources
                with MENTIONS edges to the entities they mention

        Returns:
            None
        """
        # query for inserting nodes
        node_insert_query = (
            """
            MERGE (n:`{label}` {properties})
        """
            if not include_source
            else """
            MERGE (n:`{label}` {properties})
            MERGE (d:Document {d_properties})
            MERGE (d)-[:MENTIONS]->(n)
        """
        )

        # query for inserting edges
        edge_insert_query = """
            MERGE (from:`{f_label}` {f_properties})
            MERGE (to:`{t_label}` {t_properties})
            MERGE (from)-[:`{r_label}` {r_properties}]->(to)
        """
        # iterate docs and insert them
        for doc in graph_documents:
            # if we are adding sources, create an id for the source
            if include_source:
                if not doc.source.metadata.get("id"):
                    doc.source.metadata["id"] = md5(
                        doc.source.page_content.encode("utf-8")
                    ).hexdigest()

            # insert entity nodes
            for node in doc.nodes:
                node.properties["id"] = node.id
                if include_source:
                    query = node_insert_query.format(
                        label=node.type,
                        properties=self._format_properties(node.properties),
                        d_properties=self._format_properties(doc.source.metadata),
                    )
                else:
                    query = node_insert_query.format(
                        label=AGEGraph.clean_graph_labels(node.type),
                        properties=self._format_properties(node.properties),
                    )

                self.query(query)

            # insert relationships
            for edge in doc.relationships:
                edge.source.properties["id"] = edge.source.id
                edge.target.properties["id"] = edge.target.id
                inputs = {
                    "f_label": AGEGraph.clean_graph_labels(edge.source.type),
                    "f_properties": self._format_properties(edge.source.properties),
                    "t_label": AGEGraph.clean_graph_labels(edge.target.type),
                    "t_properties": self._format_properties(edge.target.properties),
                    "r_label": AGEGraph.clean_graph_labels(edge.type).upper(),
                    "r_properties": self._format_properties(edge.properties),
                }

                query = edge_insert_query.format(**inputs)
                self.query(query)