Spaces:
Runtime error
Runtime error
File size: 7,953 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import logging
from typing import Any, Dict, List, Mapping, Optional
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra
logger = logging.getLogger(__name__)
class OllamaEmbeddings(BaseModel, Embeddings):
"""Ollama locally runs large language models.
To use, follow the instructions at https://ollama.ai/.
Example:
.. code-block:: python
from langchain_community.embeddings import OllamaEmbeddings
ollama_emb = OllamaEmbeddings(
model="llama:7b",
)
r1 = ollama_emb.embed_documents(
[
"Alpha is the first letter of Greek alphabet",
"Beta is the second letter of Greek alphabet",
]
)
r2 = ollama_emb.embed_query(
"What is the second letter of Greek alphabet"
)
"""
base_url: str = "http://localhost:11434"
"""Base url the model is hosted under."""
model: str = "llama2"
"""Model name to use."""
embed_instruction: str = "passage: "
"""Instruction used to embed documents."""
query_instruction: str = "query: "
"""Instruction used to embed the query."""
mirostat: Optional[int] = None
"""Enable Mirostat sampling for controlling perplexity.
(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)"""
mirostat_eta: Optional[float] = None
"""Influences how quickly the algorithm responds to feedback
from the generated text. A lower learning rate will result in
slower adjustments, while a higher learning rate will make
the algorithm more responsive. (Default: 0.1)"""
mirostat_tau: Optional[float] = None
"""Controls the balance between coherence and diversity
of the output. A lower value will result in more focused and
coherent text. (Default: 5.0)"""
num_ctx: Optional[int] = None
"""Sets the size of the context window used to generate the
next token. (Default: 2048) """
num_gpu: Optional[int] = None
"""The number of GPUs to use. On macOS it defaults to 1 to
enable metal support, 0 to disable."""
num_thread: Optional[int] = None
"""Sets the number of threads to use during computation.
By default, Ollama will detect this for optimal performance.
It is recommended to set this value to the number of physical
CPU cores your system has (as opposed to the logical number of cores)."""
repeat_last_n: Optional[int] = None
"""Sets how far back for the model to look back to prevent
repetition. (Default: 64, 0 = disabled, -1 = num_ctx)"""
repeat_penalty: Optional[float] = None
"""Sets how strongly to penalize repetitions. A higher value (e.g., 1.5)
will penalize repetitions more strongly, while a lower value (e.g., 0.9)
will be more lenient. (Default: 1.1)"""
temperature: Optional[float] = None
"""The temperature of the model. Increasing the temperature will
make the model answer more creatively. (Default: 0.8)"""
stop: Optional[List[str]] = None
"""Sets the stop tokens to use."""
tfs_z: Optional[float] = None
"""Tail free sampling is used to reduce the impact of less probable
tokens from the output. A higher value (e.g., 2.0) will reduce the
impact more, while a value of 1.0 disables this setting. (default: 1)"""
top_k: Optional[int] = None
"""Reduces the probability of generating nonsense. A higher value (e.g. 100)
will give more diverse answers, while a lower value (e.g. 10)
will be more conservative. (Default: 40)"""
top_p: Optional[float] = None
"""Works together with top-k. A higher value (e.g., 0.95) will lead
to more diverse text, while a lower value (e.g., 0.5) will
generate more focused and conservative text. (Default: 0.9)"""
show_progress: bool = False
"""Whether to show a tqdm progress bar. Must have `tqdm` installed."""
headers: Optional[dict] = None
"""Additional headers to pass to endpoint (e.g. Authorization, Referer).
This is useful when Ollama is hosted on cloud services that require
tokens for authentication.
"""
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Ollama."""
return {
"model": self.model,
"options": {
"mirostat": self.mirostat,
"mirostat_eta": self.mirostat_eta,
"mirostat_tau": self.mirostat_tau,
"num_ctx": self.num_ctx,
"num_gpu": self.num_gpu,
"num_thread": self.num_thread,
"repeat_last_n": self.repeat_last_n,
"repeat_penalty": self.repeat_penalty,
"temperature": self.temperature,
"stop": self.stop,
"tfs_z": self.tfs_z,
"top_k": self.top_k,
"top_p": self.top_p,
},
}
model_kwargs: Optional[dict] = None
"""Other model keyword args"""
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model": self.model}, **self._default_params}
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def _process_emb_response(self, input: str) -> List[float]:
"""Process a response from the API.
Args:
response: The response from the API.
Returns:
The response as a dictionary.
"""
headers = {
"Content-Type": "application/json",
**(self.headers or {}),
}
try:
res = requests.post(
f"{self.base_url}/api/embeddings",
headers=headers,
json={"model": self.model, "prompt": input, **self._default_params},
)
except requests.exceptions.RequestException as e:
raise ValueError(f"Error raised by inference endpoint: {e}")
if res.status_code != 200:
raise ValueError(
"Error raised by inference API HTTP code: %s, %s"
% (res.status_code, res.text)
)
try:
t = res.json()
return t["embedding"]
except requests.exceptions.JSONDecodeError as e:
raise ValueError(
f"Error raised by inference API: {e}.\nResponse: {res.text}"
)
def _embed(self, input: List[str]) -> List[List[float]]:
if self.show_progress:
try:
from tqdm import tqdm
iter_ = tqdm(input, desc="OllamaEmbeddings")
except ImportError:
logger.warning(
"Unable to show progress bar because tqdm could not be imported. "
"Please install with `pip install tqdm`."
)
iter_ = input
else:
iter_ = input
return [self._process_emb_response(prompt) for prompt in iter_]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed documents using an Ollama deployed embedding model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
instruction_pairs = [f"{self.embed_instruction}{text}" for text in texts]
embeddings = self._embed(instruction_pairs)
return embeddings
def embed_query(self, text: str) -> List[float]:
"""Embed a query using a Ollama deployed embedding model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
instruction_pair = f"{self.query_instruction}{text}"
embedding = self._embed([instruction_pair])[0]
return embedding
|