File size: 12,247 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
from __future__ import annotations

import logging
import warnings
from typing import (
    Any,
    Callable,
    Dict,
    List,
    Literal,
    Optional,
    Sequence,
    Set,
    Tuple,
    Union,
)

from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
from langchain_core.utils import get_from_dict_or_env, get_pydantic_field_names
from tenacity import (
    AsyncRetrying,
    before_sleep_log,
    retry,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential,
)

logger = logging.getLogger(__name__)


def _create_retry_decorator(embeddings: LocalAIEmbeddings) -> Callable[[Any], Any]:
    import openai

    min_seconds = 4
    max_seconds = 10
    # Wait 2^x * 1 second between each retry starting with
    # 4 seconds, then up to 10 seconds, then 10 seconds afterwards
    return retry(
        reraise=True,
        stop=stop_after_attempt(embeddings.max_retries),
        wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
        retry=(
            retry_if_exception_type(openai.error.Timeout)
            | retry_if_exception_type(openai.error.APIError)
            | retry_if_exception_type(openai.error.APIConnectionError)
            | retry_if_exception_type(openai.error.RateLimitError)
            | retry_if_exception_type(openai.error.ServiceUnavailableError)
        ),
        before_sleep=before_sleep_log(logger, logging.WARNING),
    )


def _async_retry_decorator(embeddings: LocalAIEmbeddings) -> Any:
    import openai

    min_seconds = 4
    max_seconds = 10
    # Wait 2^x * 1 second between each retry starting with
    # 4 seconds, then up to 10 seconds, then 10 seconds afterwards
    async_retrying = AsyncRetrying(
        reraise=True,
        stop=stop_after_attempt(embeddings.max_retries),
        wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
        retry=(
            retry_if_exception_type(openai.error.Timeout)
            | retry_if_exception_type(openai.error.APIError)
            | retry_if_exception_type(openai.error.APIConnectionError)
            | retry_if_exception_type(openai.error.RateLimitError)
            | retry_if_exception_type(openai.error.ServiceUnavailableError)
        ),
        before_sleep=before_sleep_log(logger, logging.WARNING),
    )

    def wrap(func: Callable) -> Callable:
        async def wrapped_f(*args: Any, **kwargs: Any) -> Callable:
            async for _ in async_retrying:
                return await func(*args, **kwargs)
            raise AssertionError("this is unreachable")

        return wrapped_f

    return wrap


# https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings
def _check_response(response: dict) -> dict:
    if any(len(d["embedding"]) == 1 for d in response["data"]):
        import openai

        raise openai.error.APIError("LocalAI API returned an empty embedding")
    return response


def embed_with_retry(embeddings: LocalAIEmbeddings, **kwargs: Any) -> Any:
    """Use tenacity to retry the embedding call."""
    retry_decorator = _create_retry_decorator(embeddings)

    @retry_decorator
    def _embed_with_retry(**kwargs: Any) -> Any:
        response = embeddings.client.create(**kwargs)
        return _check_response(response)

    return _embed_with_retry(**kwargs)


async def async_embed_with_retry(embeddings: LocalAIEmbeddings, **kwargs: Any) -> Any:
    """Use tenacity to retry the embedding call."""

    @_async_retry_decorator(embeddings)
    async def _async_embed_with_retry(**kwargs: Any) -> Any:
        response = await embeddings.client.acreate(**kwargs)
        return _check_response(response)

    return await _async_embed_with_retry(**kwargs)


class LocalAIEmbeddings(BaseModel, Embeddings):
    """LocalAI embedding models.

    Since LocalAI and OpenAI have 1:1 compatibility between APIs, this class
    uses the ``openai`` Python package's ``openai.Embedding`` as its client.
    Thus, you should have the ``openai`` python package installed, and defeat
    the environment variable ``OPENAI_API_KEY`` by setting to a random string.
    You also need to specify ``OPENAI_API_BASE`` to point to your LocalAI
    service endpoint.

    Example:
        .. code-block:: python

            from langchain_community.embeddings import LocalAIEmbeddings
            openai = LocalAIEmbeddings(
                openai_api_key="random-string",
                openai_api_base="http://localhost:8080"
            )

    """

    client: Any  #: :meta private:
    model: str = "text-embedding-ada-002"
    deployment: str = model
    openai_api_version: Optional[str] = None
    openai_api_base: Optional[str] = None
    # to support explicit proxy for LocalAI
    openai_proxy: Optional[str] = None
    embedding_ctx_length: int = 8191
    """The maximum number of tokens to embed at once."""
    openai_api_key: Optional[str] = None
    openai_organization: Optional[str] = None
    allowed_special: Union[Literal["all"], Set[str]] = set()
    disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all"
    chunk_size: int = 1000
    """Maximum number of texts to embed in each batch"""
    max_retries: int = 6
    """Maximum number of retries to make when generating."""
    request_timeout: Optional[Union[float, Tuple[float, float]]] = None
    """Timeout in seconds for the LocalAI request."""
    headers: Any = None
    show_progress_bar: bool = False
    """Whether to show a progress bar when embedding."""
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Holds any model parameters valid for `create` call not explicitly specified."""

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid

    @root_validator(pre=True)
    def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Build extra kwargs from additional params that were passed in."""
        all_required_field_names = get_pydantic_field_names(cls)
        extra = values.get("model_kwargs", {})
        for field_name in list(values):
            if field_name in extra:
                raise ValueError(f"Found {field_name} supplied twice.")
            if field_name not in all_required_field_names:
                warnings.warn(
                    f"""WARNING! {field_name} is not default parameter.
                    {field_name} was transferred to model_kwargs.
                    Please confirm that {field_name} is what you intended."""
                )
                extra[field_name] = values.pop(field_name)

        invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
        if invalid_model_kwargs:
            raise ValueError(
                f"Parameters {invalid_model_kwargs} should be specified explicitly. "
                f"Instead they were passed in as part of `model_kwargs` parameter."
            )

        values["model_kwargs"] = extra
        return values

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        values["openai_api_key"] = get_from_dict_or_env(
            values, "openai_api_key", "OPENAI_API_KEY"
        )
        values["openai_api_base"] = get_from_dict_or_env(
            values,
            "openai_api_base",
            "OPENAI_API_BASE",
            default="",
        )
        values["openai_proxy"] = get_from_dict_or_env(
            values,
            "openai_proxy",
            "OPENAI_PROXY",
            default="",
        )

        default_api_version = ""
        values["openai_api_version"] = get_from_dict_or_env(
            values,
            "openai_api_version",
            "OPENAI_API_VERSION",
            default=default_api_version,
        )
        values["openai_organization"] = get_from_dict_or_env(
            values,
            "openai_organization",
            "OPENAI_ORGANIZATION",
            default="",
        )
        try:
            import openai

            values["client"] = openai.Embedding
        except ImportError:
            raise ImportError(
                "Could not import openai python package. "
                "Please install it with `pip install openai`."
            )
        return values

    @property
    def _invocation_params(self) -> Dict:
        openai_args = {
            "model": self.model,
            "request_timeout": self.request_timeout,
            "headers": self.headers,
            "api_key": self.openai_api_key,
            "organization": self.openai_organization,
            "api_base": self.openai_api_base,
            "api_version": self.openai_api_version,
            **self.model_kwargs,
        }
        if self.openai_proxy:
            import openai

            openai.proxy = {
                "http": self.openai_proxy,
                "https": self.openai_proxy,
            }  # type: ignore[assignment]
        return openai_args

    def _embedding_func(self, text: str, *, engine: str) -> List[float]:
        """Call out to LocalAI's embedding endpoint."""
        # handle large input text
        if self.model.endswith("001"):
            # See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
            # replace newlines, which can negatively affect performance.
            text = text.replace("\n", " ")
        return embed_with_retry(
            self,
            input=[text],
            **self._invocation_params,
        )["data"][0]["embedding"]

    async def _aembedding_func(self, text: str, *, engine: str) -> List[float]:
        """Call out to LocalAI's embedding endpoint."""
        # handle large input text
        if self.model.endswith("001"):
            # See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
            # replace newlines, which can negatively affect performance.
            text = text.replace("\n", " ")
        return (
            await async_embed_with_retry(
                self,
                input=[text],
                **self._invocation_params,
            )
        )["data"][0]["embedding"]

    def embed_documents(
        self, texts: List[str], chunk_size: Optional[int] = 0
    ) -> List[List[float]]:
        """Call out to LocalAI's embedding endpoint for embedding search docs.

        Args:
            texts: The list of texts to embed.
            chunk_size: The chunk size of embeddings. If None, will use the chunk size
                specified by the class.

        Returns:
            List of embeddings, one for each text.
        """
        # call _embedding_func for each text
        return [self._embedding_func(text, engine=self.deployment) for text in texts]

    async def aembed_documents(
        self, texts: List[str], chunk_size: Optional[int] = 0
    ) -> List[List[float]]:
        """Call out to LocalAI's embedding endpoint async for embedding search docs.

        Args:
            texts: The list of texts to embed.
            chunk_size: The chunk size of embeddings. If None, will use the chunk size
                specified by the class.

        Returns:
            List of embeddings, one for each text.
        """
        embeddings = []
        for text in texts:
            response = await self._aembedding_func(text, engine=self.deployment)
            embeddings.append(response)
        return embeddings

    def embed_query(self, text: str) -> List[float]:
        """Call out to LocalAI's embedding endpoint for embedding query text.

        Args:
            text: The text to embed.

        Returns:
            Embedding for the text.
        """
        embedding = self._embedding_func(text, engine=self.deployment)
        return embedding

    async def aembed_query(self, text: str) -> List[float]:
        """Call out to LocalAI's embedding endpoint async for embedding query text.

        Args:
            text: The text to embed.

        Returns:
            Embedding for the text.
        """
        embedding = await self._aembedding_func(text, engine=self.deployment)
        return embedding