Spaces:
Runtime error
Runtime error
File size: 22,469 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
from __future__ import annotations
import asyncio
import functools
import json
import logging
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Mapping,
Optional,
Sequence,
Type,
Union,
cast,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
HumanMessage,
HumanMessageChunk,
SystemMessage,
SystemMessageChunk,
ToolMessage,
ToolMessageChunk,
)
from langchain_core.output_parsers.openai_tools import (
make_invalid_tool_call,
parse_tool_call,
)
from langchain_core.outputs import (
ChatGeneration,
ChatGenerationChunk,
ChatResult,
)
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
from langchain_core.runnables import Runnable
from langchain_core.tools import BaseTool
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from langchain_core.utils.function_calling import convert_to_openai_tool
from requests.exceptions import HTTPError
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain_community.llms.tongyi import (
agenerate_with_last_element_mark,
check_response,
generate_with_last_element_mark,
)
logger = logging.getLogger(__name__)
def convert_dict_to_message(
_dict: Mapping[str, Any], is_chunk: bool = False
) -> Union[BaseMessage, BaseMessageChunk]:
"""Convert a dict to a message."""
role = _dict["role"]
content = _dict["content"]
if role == "user":
return (
HumanMessageChunk(content=content)
if is_chunk
else HumanMessage(content=content)
)
elif role == "assistant":
tool_calls = []
invalid_tool_calls = []
if "tool_calls" in _dict:
additional_kwargs = {"tool_calls": _dict["tool_calls"]}
for index, value in enumerate(_dict["tool_calls"]):
if is_chunk:
try:
tool_calls.append(
{
"name": value["function"].get("name"),
"args": value["function"].get("arguments"),
"id": value.get("id"),
# Tongyi does not respond with index,
# use index in the list instead
"index": index,
}
)
except KeyError:
pass
else:
try:
parsed_tool = parse_tool_call(value, return_id=True)
if parsed_tool:
tool_calls.append(parsed_tool)
except Exception as e:
invalid_tool_calls.append(make_invalid_tool_call(value, str(e)))
else:
additional_kwargs = {}
return (
AIMessageChunk(
content=content,
additional_kwargs=additional_kwargs,
tool_call_chunks=tool_calls, # type: ignore[arg-type]
id=_dict.get("id"),
)
if is_chunk
else AIMessage(
content=content,
additional_kwargs=additional_kwargs,
tool_calls=tool_calls, # type: ignore[arg-type]
invalid_tool_calls=invalid_tool_calls,
)
)
elif role == "system":
return (
SystemMessageChunk(content=content)
if is_chunk
else SystemMessage(content=content)
)
elif role == "tool":
additional_kwargs = {}
if "name" in _dict:
additional_kwargs["name"] = _dict["name"]
return (
ToolMessageChunk(
content=_dict.get("content", ""),
tool_call_id=_dict.get("tool_call_id"), # type: ignore[arg-type]
additional_kwargs=additional_kwargs,
)
if is_chunk
else ToolMessage(
content=_dict.get("content", ""),
tool_call_id=_dict.get("tool_call_id"), # type: ignore[arg-type]
additional_kwargs=additional_kwargs,
)
)
else:
return (
ChatMessageChunk(role=role, content=content)
if is_chunk
else ChatMessage(role=role, content=content)
)
def convert_message_chunk_to_message(message_chunk: BaseMessageChunk) -> BaseMessage:
"""Convert a message chunk to a message.
Args:
chunk: Message chunk to convert.
Returns:
Message.
"""
if not isinstance(message_chunk, BaseMessageChunk):
return message_chunk
# chunk classes always have the equivalent non-chunk class as their first parent
ignore_keys = ["type"]
if isinstance(message_chunk, AIMessageChunk):
ignore_keys.append("tool_call_chunks")
return message_chunk.__class__.__mro__[1](
**{k: v for k, v in message_chunk.__dict__.items() if k not in ignore_keys}
)
def convert_message_to_dict(message: BaseMessage) -> dict:
"""Convert a message to a dict."""
message_dict: Dict[str, Any]
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
if "tool_calls" in message.additional_kwargs:
message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, ToolMessage):
message_dict = {
"role": "tool",
"tool_call_id": message.tool_call_id,
"content": message.content,
"name": message.name,
}
else:
raise TypeError(f"Got unknown type {message}")
return message_dict
def _create_retry_decorator(llm: ChatTongyi) -> Callable[[Any], Any]:
min_seconds = 1
max_seconds = 4
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterward
return retry(
reraise=True,
stop=stop_after_attempt(llm.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(retry_if_exception_type(HTTPError)),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
class ChatTongyi(BaseChatModel):
"""Alibaba Tongyi Qwen chat models API.
To use, you should have the ``dashscope`` python package installed,
and set env ``DASHSCOPE_API_KEY`` with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatTongyi
Tongyi_chat = ChatTongyi()
"""
@property
def lc_secrets(self) -> Dict[str, str]:
return {"dashscope_api_key": "DASHSCOPE_API_KEY"}
client: Any #: :meta private:
model_name: str = Field(default="qwen-turbo", alias="model")
"""Model name to use.
callable multimodal model:
- qwen-vl-v1
- qwen-vl-chat-v1
- qwen-audio-turbo
- qwen-vl-plus
- qwen-vl-max
"""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
top_p: float = 0.8
"""Total probability mass of tokens to consider at each step."""
dashscope_api_key: Optional[SecretStr] = Field(None, alias="api_key")
"""Dashscope api key provide by Alibaba Cloud."""
streaming: bool = False
"""Whether to stream the results or not."""
max_retries: int = 10
"""Maximum number of retries to make when generating."""
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "tongyi"
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["dashscope_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "dashscope_api_key", "DASHSCOPE_API_KEY")
)
try:
import dashscope
except ImportError:
raise ImportError(
"Could not import dashscope python package. "
"Please install it with `pip install dashscope --upgrade`."
)
dashscope_multimodal_models = [
"qwen-vl-v1",
"qwen-vl-chat-v1",
"qwen-audio-turbo",
"qwen-vl-plus",
"qwen-vl-max",
]
if (
values["model_name"] in dashscope_multimodal_models
or "vl" in values["model_name"]
):
try:
values["client"] = dashscope.MultiModalConversation
except AttributeError:
raise ValueError(
"`dashscope` has no `MultiModalConversation` attribute, this is "
"likely due to an old version of the dashscope package. Try "
"upgrading it with `pip install --upgrade dashscope`."
)
else:
try:
values["client"] = dashscope.Generation
except AttributeError:
raise ValueError(
"`dashscope` has no `Generation` attribute, this is likely "
"due to an old version of the dashscope package. Try upgrading it "
"with `pip install --upgrade dashscope`."
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Tongyi Qwen API."""
return {
"model": self.model_name,
"top_p": self.top_p,
"api_key": cast(SecretStr, self.dashscope_api_key).get_secret_value(),
"result_format": "message",
**self.model_kwargs,
}
def completion_with_retry(self, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(self)
@retry_decorator
def _completion_with_retry(**_kwargs: Any) -> Any:
resp = self.client.call(**_kwargs)
return check_response(resp)
return _completion_with_retry(**kwargs)
def stream_completion_with_retry(self, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(self)
@retry_decorator
def _stream_completion_with_retry(**_kwargs: Any) -> Any:
responses = self.client.call(**_kwargs)
prev_resp = None
for resp in responses:
# If we are streaming without `incremental_output = True`,
# we need to calculate the delta response manually
if _kwargs.get("stream") and not _kwargs.get(
"incremental_output", False
):
if prev_resp is None:
delta_resp = resp
else:
delta_resp = self.subtract_client_response(resp, prev_resp)
prev_resp = resp
yield check_response(delta_resp)
else:
yield check_response(resp)
return _stream_completion_with_retry(**kwargs)
def subtract_client_response(self, resp: Any, prev_resp: Any) -> Any:
"""Subtract prev response from curr response.
Useful when streaming without `incremental_output = True`
"""
resp_copy = json.loads(json.dumps(resp))
choice = resp_copy["output"]["choices"][0]
message = choice["message"]
prev_resp_copy = json.loads(json.dumps(prev_resp))
prev_choice = prev_resp_copy["output"]["choices"][0]
prev_message = prev_choice["message"]
message["content"] = message["content"].replace(prev_message["content"], "")
if message.get("tool_calls"):
for index, tool_call in enumerate(message["tool_calls"]):
function = tool_call["function"]
if prev_message.get("tool_calls"):
prev_function = prev_message["tool_calls"][index]["function"]
function["name"] = function["name"].replace(
prev_function["name"], ""
)
function["arguments"] = function["arguments"].replace(
prev_function["arguments"], ""
)
return resp_copy
async def astream_completion_with_retry(self, **kwargs: Any) -> Any:
"""Because the dashscope SDK doesn't provide an async API,
we wrap `stream_generate_with_retry` with an async generator."""
class _AioTongyiGenerator:
def __init__(self, generator: Any):
self.generator = generator
def __aiter__(self) -> AsyncIterator[Any]:
return self
async def __anext__(self) -> Any:
value = await asyncio.get_running_loop().run_in_executor(
None, self._safe_next
)
if value is not None:
return value
else:
raise StopAsyncIteration
def _safe_next(self) -> Any:
try:
return next(self.generator)
except StopIteration:
return None
async for chunk in _AioTongyiGenerator(
generator=self.stream_completion_with_retry(**kwargs)
):
yield chunk
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
generations = []
if self.streaming:
generation_chunk: Optional[ChatGenerationChunk] = None
for chunk in self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
):
if generation_chunk is None:
generation_chunk = chunk
else:
generation_chunk += chunk
assert generation_chunk is not None
generations.append(self._chunk_to_generation(generation_chunk))
else:
params: Dict[str, Any] = self._invocation_params(
messages=messages, stop=stop, **kwargs
)
resp = self.completion_with_retry(**params)
generations.append(
ChatGeneration(**self._chat_generation_from_qwen_resp(resp))
)
return ChatResult(
generations=generations,
llm_output={
"model_name": self.model_name,
},
)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
generations = []
if self.streaming:
generation: Optional[ChatGenerationChunk] = None
async for chunk in self._astream(
messages, stop=stop, run_manager=run_manager, **kwargs
):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
generations.append(self._chunk_to_generation(generation))
else:
params: Dict[str, Any] = self._invocation_params(
messages=messages, stop=stop, **kwargs
)
resp = await asyncio.get_running_loop().run_in_executor(
None,
functools.partial(self.completion_with_retry, **params),
)
generations.append(
ChatGeneration(**self._chat_generation_from_qwen_resp(resp))
)
return ChatResult(
generations=generations,
llm_output={
"model_name": self.model_name,
},
)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
params: Dict[str, Any] = self._invocation_params(
messages=messages, stop=stop, stream=True, **kwargs
)
for stream_resp, is_last_chunk in generate_with_last_element_mark(
self.stream_completion_with_retry(**params)
):
choice = stream_resp["output"]["choices"][0]
message = choice["message"]
if (
choice["finish_reason"] == "null"
and message["content"] == ""
and "tool_calls" not in message
):
continue
chunk = ChatGenerationChunk(
**self._chat_generation_from_qwen_resp(
stream_resp, is_chunk=True, is_last_chunk=is_last_chunk
)
)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
params: Dict[str, Any] = self._invocation_params(
messages=messages, stop=stop, stream=True, **kwargs
)
async for stream_resp, is_last_chunk in agenerate_with_last_element_mark(
self.astream_completion_with_retry(**params)
):
chunk = ChatGenerationChunk(
**self._chat_generation_from_qwen_resp(
stream_resp, is_chunk=True, is_last_chunk=is_last_chunk
)
)
if run_manager:
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
def _invocation_params(
self, messages: List[BaseMessage], stop: Any, **kwargs: Any
) -> Dict[str, Any]:
params = {**self._default_params, **kwargs}
if stop is not None:
params["stop"] = stop
# According to the Tongyi official docs,
# `incremental_output` with `tools` is not supported yet
if params.get("stream") and not params.get("tools"):
params["incremental_output"] = True
message_dicts = [convert_message_to_dict(m) for m in messages]
# And the `system` message should be the first message if present
system_message_indices = [
i for i, m in enumerate(message_dicts) if m["role"] == "system"
]
if len(system_message_indices) == 1 and system_message_indices[0] != 0:
raise ValueError("System message can only be the first message.")
elif len(system_message_indices) > 1:
raise ValueError("There can be only one system message at most.")
params["messages"] = message_dicts
return params
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
if llm_outputs[0] is None:
return {}
return llm_outputs[0]
@staticmethod
def _chat_generation_from_qwen_resp(
resp: Any, is_chunk: bool = False, is_last_chunk: bool = True
) -> Dict[str, Any]:
# According to the response from dashscope,
# each chunk's `generation_info` overwrites the previous one.
# Besides, The `merge_dicts` method,
# which is used to concatenate `generation_info` in `GenerationChunk`,
# does not support merging of int type values.
# Therefore, we adopt the `generation_info` of the last chunk
# and discard the `generation_info` of the intermediate chunks.
choice = resp["output"]["choices"][0]
message = convert_dict_to_message(choice["message"], is_chunk=is_chunk)
if is_last_chunk:
return dict(
message=message,
generation_info=dict(
finish_reason=choice["finish_reason"],
request_id=resp["request_id"],
token_usage=dict(resp["usage"]),
),
)
else:
return dict(message=message)
@staticmethod
def _chunk_to_generation(chunk: ChatGenerationChunk) -> ChatGeneration:
return ChatGeneration(
message=convert_message_chunk_to_message(chunk.message),
generation_info=chunk.generation_info,
)
def bind_tools(
self,
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
**kwargs: Any,
) -> Runnable[LanguageModelInput, BaseMessage]:
"""Bind tool-like objects to this chat model.
Args:
tools: A list of tool definitions to bind to this chat model.
Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic
models, callables, and BaseTools will be automatically converted to
their schema dictionary representation.
**kwargs: Any additional parameters to pass to the
:class:`~langchain.runnable.Runnable` constructor.
"""
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
return super().bind(tools=formatted_tools, **kwargs)
|