File size: 15,832 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
"""Wrapper around LiteLLM's model I/O library."""
from __future__ import annotations

import logging
from typing import (
    Any,
    AsyncIterator,
    Callable,
    Dict,
    Iterator,
    List,
    Mapping,
    Optional,
    Tuple,
    Type,
    Union,
)

from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    agenerate_from_stream,
    generate_from_stream,
)
from langchain_core.language_models.llms import create_base_retry_decorator
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    ChatMessageChunk,
    FunctionMessage,
    FunctionMessageChunk,
    HumanMessage,
    HumanMessageChunk,
    SystemMessage,
    SystemMessageChunk,
)
from langchain_core.outputs import (
    ChatGeneration,
    ChatGenerationChunk,
    ChatResult,
)
from langchain_core.pydantic_v1 import Field, root_validator
from langchain_core.utils import get_from_dict_or_env

logger = logging.getLogger(__name__)


class ChatLiteLLMException(Exception):
    """Error with the `LiteLLM I/O` library"""


def _create_retry_decorator(
    llm: ChatLiteLLM,
    run_manager: Optional[
        Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
    ] = None,
) -> Callable[[Any], Any]:
    """Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions"""
    import litellm

    errors = [
        litellm.Timeout,
        litellm.APIError,
        litellm.APIConnectionError,
        litellm.RateLimitError,
    ]
    return create_base_retry_decorator(
        error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
    )


def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
    role = _dict["role"]
    if role == "user":
        return HumanMessage(content=_dict["content"])
    elif role == "assistant":
        # Fix for azure
        # Also OpenAI returns None for tool invocations
        content = _dict.get("content", "") or ""
        if _dict.get("function_call"):
            additional_kwargs = {"function_call": dict(_dict["function_call"])}
        else:
            additional_kwargs = {}
        return AIMessage(content=content, additional_kwargs=additional_kwargs)
    elif role == "system":
        return SystemMessage(content=_dict["content"])
    elif role == "function":
        return FunctionMessage(content=_dict["content"], name=_dict["name"])
    else:
        return ChatMessage(content=_dict["content"], role=role)


async def acompletion_with_retry(
    llm: ChatLiteLLM,
    run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
    **kwargs: Any,
) -> Any:
    """Use tenacity to retry the async completion call."""
    retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)

    @retry_decorator
    async def _completion_with_retry(**kwargs: Any) -> Any:
        # Use OpenAI's async api https://github.com/openai/openai-python#async-api
        return await llm.client.acreate(**kwargs)

    return await _completion_with_retry(**kwargs)


def _convert_delta_to_message_chunk(
    _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
    role = _dict.get("role")
    content = _dict.get("content") or ""
    if _dict.get("function_call"):
        additional_kwargs = {"function_call": dict(_dict["function_call"])}
    else:
        additional_kwargs = {}

    if role == "user" or default_class == HumanMessageChunk:
        return HumanMessageChunk(content=content)
    elif role == "assistant" or default_class == AIMessageChunk:
        return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
    elif role == "system" or default_class == SystemMessageChunk:
        return SystemMessageChunk(content=content)
    elif role == "function" or default_class == FunctionMessageChunk:
        return FunctionMessageChunk(content=content, name=_dict["name"])
    elif role or default_class == ChatMessageChunk:
        return ChatMessageChunk(content=content, role=role)  # type: ignore[arg-type]
    else:
        return default_class(content=content)  # type: ignore[call-arg]


def _convert_message_to_dict(message: BaseMessage) -> dict:
    if isinstance(message, ChatMessage):
        message_dict = {"role": message.role, "content": message.content}
    elif isinstance(message, HumanMessage):
        message_dict = {"role": "user", "content": message.content}
    elif isinstance(message, AIMessage):
        message_dict = {"role": "assistant", "content": message.content}
        if "function_call" in message.additional_kwargs:
            message_dict["function_call"] = message.additional_kwargs["function_call"]
    elif isinstance(message, SystemMessage):
        message_dict = {"role": "system", "content": message.content}
    elif isinstance(message, FunctionMessage):
        message_dict = {
            "role": "function",
            "content": message.content,
            "name": message.name,
        }
    else:
        raise ValueError(f"Got unknown type {message}")
    if "name" in message.additional_kwargs:
        message_dict["name"] = message.additional_kwargs["name"]
    return message_dict


class ChatLiteLLM(BaseChatModel):
    """Chat model that uses the LiteLLM API."""

    client: Any  #: :meta private:
    model: str = "gpt-3.5-turbo"
    model_name: Optional[str] = None
    """Model name to use."""
    openai_api_key: Optional[str] = None
    azure_api_key: Optional[str] = None
    anthropic_api_key: Optional[str] = None
    replicate_api_key: Optional[str] = None
    cohere_api_key: Optional[str] = None
    openrouter_api_key: Optional[str] = None
    streaming: bool = False
    api_base: Optional[str] = None
    organization: Optional[str] = None
    custom_llm_provider: Optional[str] = None
    request_timeout: Optional[Union[float, Tuple[float, float]]] = None
    temperature: Optional[float] = 1
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Run inference with this temperature. Must by in the closed
       interval [0.0, 1.0]."""
    top_p: Optional[float] = None
    """Decode using nucleus sampling: consider the smallest set of tokens whose
       probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]."""
    top_k: Optional[int] = None
    """Decode using top-k sampling: consider the set of top_k most probable tokens.
       Must be positive."""
    n: int = 1
    """Number of chat completions to generate for each prompt. Note that the API may
       not return the full n completions if duplicates are generated."""
    max_tokens: int = 256

    max_retries: int = 6

    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling OpenAI API."""
        set_model_value = self.model
        if self.model_name is not None:
            set_model_value = self.model_name
        return {
            "model": set_model_value,
            "force_timeout": self.request_timeout,
            "max_tokens": self.max_tokens,
            "stream": self.streaming,
            "n": self.n,
            "temperature": self.temperature,
            "custom_llm_provider": self.custom_llm_provider,
            **self.model_kwargs,
        }

    @property
    def _client_params(self) -> Dict[str, Any]:
        """Get the parameters used for the openai client."""
        set_model_value = self.model
        if self.model_name is not None:
            set_model_value = self.model_name
        self.client.api_base = self.api_base
        self.client.organization = self.organization
        creds: Dict[str, Any] = {
            "model": set_model_value,
            "force_timeout": self.request_timeout,
            "api_base": self.api_base,
        }
        return {**self._default_params, **creds}

    def completion_with_retry(
        self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
    ) -> Any:
        """Use tenacity to retry the completion call."""
        retry_decorator = _create_retry_decorator(self, run_manager=run_manager)

        @retry_decorator
        def _completion_with_retry(**kwargs: Any) -> Any:
            return self.client.completion(**kwargs)

        return _completion_with_retry(**kwargs)

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate api key, python package exists, temperature, top_p, and top_k."""
        try:
            import litellm
        except ImportError:
            raise ChatLiteLLMException(
                "Could not import litellm python package. "
                "Please install it with `pip install litellm`"
            )

        values["openai_api_key"] = get_from_dict_or_env(
            values, "openai_api_key", "OPENAI_API_KEY", default=""
        )
        values["azure_api_key"] = get_from_dict_or_env(
            values, "azure_api_key", "AZURE_API_KEY", default=""
        )
        values["anthropic_api_key"] = get_from_dict_or_env(
            values, "anthropic_api_key", "ANTHROPIC_API_KEY", default=""
        )
        values["replicate_api_key"] = get_from_dict_or_env(
            values, "replicate_api_key", "REPLICATE_API_KEY", default=""
        )
        values["openrouter_api_key"] = get_from_dict_or_env(
            values, "openrouter_api_key", "OPENROUTER_API_KEY", default=""
        )
        values["cohere_api_key"] = get_from_dict_or_env(
            values, "cohere_api_key", "COHERE_API_KEY", default=""
        )
        values["huggingface_api_key"] = get_from_dict_or_env(
            values, "huggingface_api_key", "HUGGINGFACE_API_KEY", default=""
        )
        values["together_ai_api_key"] = get_from_dict_or_env(
            values, "together_ai_api_key", "TOGETHERAI_API_KEY", default=""
        )
        values["client"] = litellm

        if values["temperature"] is not None and not 0 <= values["temperature"] <= 1:
            raise ValueError("temperature must be in the range [0.0, 1.0]")

        if values["top_p"] is not None and not 0 <= values["top_p"] <= 1:
            raise ValueError("top_p must be in the range [0.0, 1.0]")

        if values["top_k"] is not None and values["top_k"] <= 0:
            raise ValueError("top_k must be positive")

        return values

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        stream: Optional[bool] = None,
        **kwargs: Any,
    ) -> ChatResult:
        should_stream = stream if stream is not None else self.streaming
        if should_stream:
            stream_iter = self._stream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return generate_from_stream(stream_iter)

        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {**params, **kwargs}
        response = self.completion_with_retry(
            messages=message_dicts, run_manager=run_manager, **params
        )
        return self._create_chat_result(response)

    def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
        generations = []
        for res in response["choices"]:
            message = _convert_dict_to_message(res["message"])
            gen = ChatGeneration(
                message=message,
                generation_info=dict(finish_reason=res.get("finish_reason")),
            )
            generations.append(gen)
        token_usage = response.get("usage", {})
        set_model_value = self.model
        if self.model_name is not None:
            set_model_value = self.model_name
        llm_output = {"token_usage": token_usage, "model": set_model_value}
        return ChatResult(generations=generations, llm_output=llm_output)

    def _create_message_dicts(
        self, messages: List[BaseMessage], stop: Optional[List[str]]
    ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
        params = self._client_params
        if stop is not None:
            if "stop" in params:
                raise ValueError("`stop` found in both the input and default params.")
            params["stop"] = stop
        message_dicts = [_convert_message_to_dict(m) for m in messages]
        return message_dicts, params

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {**params, **kwargs, "stream": True}

        default_chunk_class = AIMessageChunk
        for chunk in self.completion_with_retry(
            messages=message_dicts, run_manager=run_manager, **params
        ):
            if len(chunk["choices"]) == 0:
                continue
            delta = chunk["choices"][0]["delta"]
            chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
            default_chunk_class = chunk.__class__
            cg_chunk = ChatGenerationChunk(message=chunk)
            if run_manager:
                run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
            yield cg_chunk

    async def _astream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> AsyncIterator[ChatGenerationChunk]:
        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {**params, **kwargs, "stream": True}

        default_chunk_class = AIMessageChunk
        async for chunk in await acompletion_with_retry(
            self, messages=message_dicts, run_manager=run_manager, **params
        ):
            if len(chunk["choices"]) == 0:
                continue
            delta = chunk["choices"][0]["delta"]
            chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
            default_chunk_class = chunk.__class__
            cg_chunk = ChatGenerationChunk(message=chunk)
            if run_manager:
                await run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
            yield cg_chunk

    async def _agenerate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        stream: Optional[bool] = None,
        **kwargs: Any,
    ) -> ChatResult:
        should_stream = stream if stream is not None else self.streaming
        if should_stream:
            stream_iter = self._astream(
                messages=messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return await agenerate_from_stream(stream_iter)

        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {**params, **kwargs}
        response = await acompletion_with_retry(
            self, messages=message_dicts, run_manager=run_manager, **params
        )
        return self._create_chat_result(response)

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        """Get the identifying parameters."""
        set_model_value = self.model
        if self.model_name is not None:
            set_model_value = self.model_name
        return {
            "model": set_model_value,
            "temperature": self.temperature,
            "top_p": self.top_p,
            "top_k": self.top_k,
            "n": self.n,
        }

    @property
    def _llm_type(self) -> str:
        return "litellm-chat"