File size: 20,267 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
##
# Copyright (c) 2024, Chad Juliano, Kinetica DB Inc.
##
"""Kinetica SQL generation LLM API."""

import json
import logging
import os
import re
from importlib.metadata import version
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, List, Optional, cast

if TYPE_CHECKING:
    import gpudb

from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
    AIMessage,
    BaseMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.output_parsers.transform import BaseOutputParser
from langchain_core.outputs import ChatGeneration, ChatResult, Generation
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator

LOG = logging.getLogger(__name__)

# Kinetica pydantic API datatypes


class _KdtSuggestContext(BaseModel):
    """pydantic API request type"""

    table: Optional[str] = Field(default=None, title="Name of table")
    description: Optional[str] = Field(default=None, title="Table description")
    columns: List[str] = Field(default=None, title="Table columns list")
    rules: Optional[List[str]] = Field(
        default=None, title="Rules that apply to the table."
    )
    samples: Optional[Dict] = Field(
        default=None, title="Samples that apply to the entire context."
    )

    def to_system_str(self) -> str:
        lines = []
        lines.append(f"CREATE TABLE {self.table} AS")
        lines.append("(")

        if not self.columns or len(self.columns) == 0:
            ValueError("columns list can't be null.")

        columns = []
        for column in self.columns:
            column = column.replace('"', "").strip()
            columns.append(f"   {column}")
        lines.append(",\n".join(columns))
        lines.append(");")

        if self.description:
            lines.append(f"COMMENT ON TABLE {self.table} IS '{self.description}';")

        if self.rules and len(self.rules) > 0:
            lines.append(
                f"-- When querying table {self.table} the following rules apply:"
            )
            for rule in self.rules:
                lines.append(f"-- * {rule}")

        result = "\n".join(lines)
        return result


class _KdtSuggestPayload(BaseModel):
    """pydantic API request type"""

    question: Optional[str]
    context: List[_KdtSuggestContext]

    def get_system_str(self) -> str:
        lines = []
        for table_context in self.context:
            if table_context.table is None:
                continue
            context_str = table_context.to_system_str()
            lines.append(context_str)
        return "\n\n".join(lines)

    def get_messages(self) -> List[Dict]:
        messages = []
        for context in self.context:
            if context.samples is None:
                continue
            for question, answer in context.samples.items():
                # unescape double quotes
                answer = answer.replace("''", "'")

                messages.append(dict(role="user", content=question or ""))
                messages.append(dict(role="assistant", content=answer))
        return messages

    def to_completion(self) -> Dict:
        messages = []
        messages.append(dict(role="system", content=self.get_system_str()))
        messages.extend(self.get_messages())
        messages.append(dict(role="user", content=self.question or ""))
        response = dict(messages=messages)
        return response


class _KdtoSuggestRequest(BaseModel):
    """pydantic API request type"""

    payload: _KdtSuggestPayload


class _KdtMessage(BaseModel):
    """pydantic API response type"""

    role: str = Field(default=None, title="One of [user|assistant|system]")
    content: str


class _KdtChoice(BaseModel):
    """pydantic API response type"""

    index: int
    message: _KdtMessage = Field(default=None, title="The generated SQL")
    finish_reason: str


class _KdtUsage(BaseModel):
    """pydantic API response type"""

    prompt_tokens: int
    completion_tokens: int
    total_tokens: int


class _KdtSqlResponse(BaseModel):
    """pydantic API response type"""

    id: str
    object: str
    created: int
    model: str
    choices: List[_KdtChoice]
    usage: _KdtUsage
    prompt: str = Field(default=None, title="The input question")


class _KdtCompletionResponse(BaseModel):
    """pydantic API response type"""

    status: str
    data: _KdtSqlResponse


class _KineticaLlmFileContextParser:
    """Parser for Kinetica LLM context datafiles."""

    # parse line into a dict containing role and content
    PARSER = re.compile(r"^<\|(?P<role>\w+)\|>\W*(?P<content>.*)$", re.DOTALL)

    @classmethod
    def _removesuffix(cls, text: str, suffix: str) -> str:
        if suffix and text.endswith(suffix):
            return text[: -len(suffix)]
        return text

    @classmethod
    def parse_dialogue_file(cls, input_file: os.PathLike) -> Dict:
        path = Path(input_file)
        # schema = path.name.removesuffix(".txt") python 3.9
        schema = cls._removesuffix(path.name, ".txt")

        lines = open(input_file).read()
        return cls.parse_dialogue(lines, schema)

    @classmethod
    def parse_dialogue(cls, text: str, schema: str) -> Dict:
        messages = []
        system = None

        lines = text.split("<|end|>")
        user_message = None

        for idx, line in enumerate(lines):
            line = line.strip()

            if len(line) == 0:
                continue

            match = cls.PARSER.match(line)
            if match is None:
                raise ValueError(f"Could not find starting token in: {line}")

            groupdict = match.groupdict()
            role = groupdict["role"]

            if role == "system":
                if system is not None:
                    raise ValueError(f"Only one system token allowed in: {line}")
                system = groupdict["content"]
            elif role == "user":
                if user_message is not None:
                    raise ValueError(
                        f"Found user token without assistant token: {line}"
                    )
                user_message = groupdict
            elif role == "assistant":
                if user_message is None:
                    raise Exception(f"Found assistant token without user token: {line}")
                messages.append(user_message)
                messages.append(groupdict)
                user_message = None
            else:
                raise ValueError(f"Unknown token: {role}")

        return {"schema": schema, "system": system, "messages": messages}


class KineticaUtil:
    """Kinetica utility functions."""

    @classmethod
    def create_kdbc(
        cls,
        url: Optional[str] = None,
        user: Optional[str] = None,
        passwd: Optional[str] = None,
    ) -> "gpudb.GPUdb":
        """Create a connectica connection object and verify connectivity.

        If None is passed for one or more of the parameters then an attempt will be made
        to retrieve the value from the related environment variable.

        Args:
            url: The Kinetica URL or ``KINETICA_URL`` if None.
            user: The Kinetica user or ``KINETICA_USER`` if None.
            passwd: The Kinetica password or ``KINETICA_PASSWD`` if None.

        Returns:
            The Kinetica connection object.
        """

        try:
            import gpudb
        except ModuleNotFoundError:
            raise ImportError(
                "Could not import Kinetica python package. "
                "Please install it with `pip install gpudb`."
            )

        url = cls._get_env("KINETICA_URL", url)
        user = cls._get_env("KINETICA_USER", user)
        passwd = cls._get_env("KINETICA_PASSWD", passwd)

        options = gpudb.GPUdb.Options()
        options.username = user
        options.password = passwd
        options.skip_ssl_cert_verification = True
        options.disable_failover = True
        options.logging_level = "INFO"
        kdbc = gpudb.GPUdb(host=url, options=options)

        LOG.info(
            "Connected to Kinetica: {}. (api={}, server={})".format(
                kdbc.get_url(), version("gpudb"), kdbc.server_version
            )
        )

        return kdbc

    @classmethod
    def _get_env(cls, name: str, default: Optional[str]) -> str:
        """Get an environment variable or use a default."""
        if default is not None:
            return default

        result = os.getenv(name)
        if result is not None:
            return result

        raise ValueError(
            f"Parameter was not passed and not found in the environment: {name}"
        )


class ChatKinetica(BaseChatModel):
    """Kinetica LLM Chat Model API.

    Prerequisites for using this API:

    * The ``gpudb`` and ``typeguard`` packages installed.
    * A Kinetica DB instance.
    * Kinetica host specified in ``KINETICA_URL``
    * Kinetica login specified ``KINETICA_USER``, and ``KINETICA_PASSWD``.
    * An LLM context that specifies the tables and samples to use for inferencing.

    This API is intended to interact with the Kinetica SqlAssist LLM that supports
    generation of SQL from natural language.

    In the Kinetica LLM workflow you create an LLM context in the database that provides
    information needed for infefencing that includes tables, annotations, rules, and
    samples. Invoking ``load_messages_from_context()`` will retrieve the contxt
    information from the database so that it can be used to create a chat prompt.

    The chat prompt consists of a ``SystemMessage`` and pairs of
    ``HumanMessage``/``AIMessage`` that contain the samples which are question/SQL
    pairs. You can append pairs samples to this list but it is not intended to
    facilitate a typical natural language conversation.

    When you create a chain from the chat prompt and execute it, the Kinetica LLM will
    generate SQL from the input. Optionally you can use ``KineticaSqlOutputParser`` to
    execute the SQL and return the result as a dataframe.

    The following example creates an LLM using the environment variables for the
    Kinetica connection. This will fail if the API is unable to connect to the database.

    Example:
        .. code-block:: python

            from langchain_community.chat_models.kinetica import KineticaChatLLM
            kinetica_llm = KineticaChatLLM()

    If you prefer to pass connection information directly then you can create a
    connection using ``KineticaUtil.create_kdbc()``.

    Example:
        .. code-block:: python

            from langchain_community.chat_models.kinetica import (
                KineticaChatLLM, KineticaUtil)
            kdbc = KineticaUtil._create_kdbc(url=url, user=user, passwd=passwd)
            kinetica_llm = KineticaChatLLM(kdbc=kdbc)
    """

    kdbc: Any = Field(exclude=True)
    """ Kinetica DB connection. """

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Pydantic object validator."""

        kdbc = values.get("kdbc", None)
        if kdbc is None:
            kdbc = KineticaUtil.create_kdbc()
            values["kdbc"] = kdbc
        return values

    @property
    def _llm_type(self) -> str:
        return "kinetica-sqlassist"

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        return dict(
            kinetica_version=str(self.kdbc.server_version), api_version=version("gpudb")
        )

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        if stop is not None:
            raise ValueError("stop kwargs are not permitted.")

        dict_messages = [self._convert_message_to_dict(m) for m in messages]
        sql_response = self._submit_completion(dict_messages)

        response_message = sql_response.choices[0].message
        # generated_dict = response_message.model_dump() # pydantic v2
        generated_dict = response_message.dict()

        generated_message = self._convert_message_from_dict(generated_dict)

        llm_output = dict(
            input_tokens=sql_response.usage.prompt_tokens,
            output_tokens=sql_response.usage.completion_tokens,
            model_name=sql_response.model,
        )
        return ChatResult(
            generations=[ChatGeneration(message=generated_message)],
            llm_output=llm_output,
        )

    def load_messages_from_context(self, context_name: str) -> List:
        """Load a lanchain prompt from a Kinetica context.

        A Kinetica Context is an object created with the Kinetica Workbench UI or with
        SQL syntax. This function will convert the data in the context to a list of
        messages that can be used as a prompt. The messages will contain a
        ``SystemMessage`` followed by pairs of ``HumanMessage``/``AIMessage`` that
        contain the samples.

        Args:
            context_name: The name of an LLM context in the database.

        Returns:
            A list of messages containing the information from the context.
        """

        # query kinetica for the prompt
        sql = f"GENERATE PROMPT WITH OPTIONS (CONTEXT_NAMES = '{context_name}')"
        result = self._execute_sql(sql)
        prompt = result["Prompt"]
        prompt_json = json.loads(prompt)

        # convert the prompt to messages
        # request = SuggestRequest.model_validate(prompt_json) # pydantic v2
        request = _KdtoSuggestRequest.parse_obj(prompt_json)
        payload = request.payload

        dict_messages = []
        dict_messages.append(dict(role="system", content=payload.get_system_str()))
        dict_messages.extend(payload.get_messages())
        messages = [self._convert_message_from_dict(m) for m in dict_messages]
        return messages

    def _submit_completion(self, messages: List[Dict]) -> _KdtSqlResponse:
        """Submit a /chat/completions request to Kinetica."""

        request = dict(messages=messages)
        request_json = json.dumps(request)
        response_raw = self.kdbc._GPUdb__submit_request_json(
            "/chat/completions", request_json
        )
        response_json = json.loads(response_raw)

        status = response_json["status"]
        if status != "OK":
            message = response_json["message"]
            match_resp = re.compile(r"response:({.*})")
            result = match_resp.search(message)
            if result is not None:
                response = result.group(1)
                response_json = json.loads(response)
                message = response_json["message"]
            raise ValueError(message)

        data = response_json["data"]
        # response = CompletionResponse.model_validate(data) # pydantic v2
        response = _KdtCompletionResponse.parse_obj(data)
        if response.status != "OK":
            raise ValueError("SQL Generation failed")
        return response.data

    def _execute_sql(self, sql: str) -> Dict:
        """Execute an SQL query and return the result."""

        response = self.kdbc.execute_sql_and_decode(
            sql, limit=1, get_column_major=False
        )

        status_info = response["status_info"]
        if status_info["status"] != "OK":
            message = status_info["message"]
            raise ValueError(message)

        records = response["records"]
        if len(records) != 1:
            raise ValueError("No records returned.")

        record = records[0]
        response_dict = {}
        for col, val in record.items():
            response_dict[col] = val
        return response_dict

    @classmethod
    def load_messages_from_datafile(cls, sa_datafile: Path) -> List[BaseMessage]:
        """Load a lanchain prompt from a Kinetica context datafile."""
        datafile_dict = _KineticaLlmFileContextParser.parse_dialogue_file(sa_datafile)
        messages = cls._convert_dict_to_messages(datafile_dict)
        return messages

    @classmethod
    def _convert_message_to_dict(cls, message: BaseMessage) -> Dict:
        """Convert a single message to a BaseMessage."""

        content = cast(str, message.content)
        if isinstance(message, HumanMessage):
            role = "user"
        elif isinstance(message, AIMessage):
            role = "assistant"
        elif isinstance(message, SystemMessage):
            role = "system"
        else:
            raise ValueError(f"Got unsupported message type: {message}")

        result_message = dict(role=role, content=content)
        return result_message

    @classmethod
    def _convert_message_from_dict(cls, message: Dict) -> BaseMessage:
        """Convert a single message from a BaseMessage."""

        role = message["role"]
        content = message["content"]
        if role == "user":
            return HumanMessage(content=content)
        elif role == "assistant":
            return AIMessage(content=content)
        elif role == "system":
            return SystemMessage(content=content)
        else:
            raise ValueError(f"Got unsupported role: {role}")

    @classmethod
    def _convert_dict_to_messages(cls, sa_data: Dict) -> List[BaseMessage]:
        """Convert a dict to a list of BaseMessages."""

        schema = sa_data["schema"]
        system = sa_data["system"]
        messages = sa_data["messages"]
        LOG.info(f"Importing prompt for schema: {schema}")

        result_list: List[BaseMessage] = []
        result_list.append(SystemMessage(content=system))
        result_list.extend([cls._convert_message_from_dict(m) for m in messages])
        return result_list


class KineticaSqlResponse(BaseModel):
    """Response containing SQL and the fetched data.

    This object is returned by a chain with ``KineticaSqlOutputParser`` and it contains
    the generated SQL and related Pandas Dataframe fetched from the database.
    """

    sql: str = Field(default=None)
    """The generated SQL."""

    # dataframe: "pd.DataFrame" = Field(default=None)
    dataframe: Any = Field(default=None)
    """The Pandas dataframe containing the fetched data."""

    class Config:
        """Configuration for this pydantic object."""

        arbitrary_types_allowed = True


class KineticaSqlOutputParser(BaseOutputParser[KineticaSqlResponse]):
    """Fetch and return data from the Kinetica LLM.

    This object is used as the last element of a chain to execute generated SQL and it
    will output a ``KineticaSqlResponse`` containing the SQL and a pandas dataframe with
    the fetched data.

    Example:
        .. code-block:: python

            from langchain_community.chat_models.kinetica import (
                KineticaChatLLM, KineticaSqlOutputParser)
            kinetica_llm = KineticaChatLLM()

            # create chain
            ctx_messages = kinetica_llm.load_messages_from_context(self.context_name)
            ctx_messages.append(("human", "{input}"))
            prompt_template = ChatPromptTemplate.from_messages(ctx_messages)
            chain = (
                prompt_template
                | kinetica_llm
                | KineticaSqlOutputParser(kdbc=kinetica_llm.kdbc)
            )
            sql_response: KineticaSqlResponse = chain.invoke(
                {"input": "What are the female users ordered by username?"}
            )

            assert isinstance(sql_response, KineticaSqlResponse)
            LOG.info(f"SQL Response: {sql_response.sql}")
            assert isinstance(sql_response.dataframe, pd.DataFrame)
    """

    kdbc: Any = Field(exclude=True)
    """ Kinetica DB connection. """

    class Config:
        """Configuration for this pydantic object."""

        arbitrary_types_allowed = True

    def parse(self, text: str) -> KineticaSqlResponse:
        df = self.kdbc.to_df(text)
        return KineticaSqlResponse(sql=text, dataframe=df)

    def parse_result(
        self, result: List[Generation], *, partial: bool = False
    ) -> KineticaSqlResponse:
        return self.parse(result[0].text)

    @property
    def _type(self) -> str:
        return "kinetica_sql_output_parser"