File size: 9,738 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from __future__ import annotations

import logging
from typing import (
    TYPE_CHECKING,
    Any,
    AsyncIterator,
    Dict,
    Iterator,
    List,
    Mapping,
    Optional,
    Type,
)

from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    agenerate_from_stream,
    generate_from_stream,
)
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    ChatMessageChunk,
    FunctionMessage,
    FunctionMessageChunk,
    HumanMessage,
    HumanMessageChunk,
    SystemMessage,
    SystemMessageChunk,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult

from langchain_community.llms.gigachat import _BaseGigaChat

if TYPE_CHECKING:
    import gigachat.models as gm

logger = logging.getLogger(__name__)


def _convert_dict_to_message(message: gm.Messages) -> BaseMessage:
    from gigachat.models import FunctionCall, MessagesRole

    additional_kwargs: Dict = {}
    if function_call := message.function_call:
        if isinstance(function_call, FunctionCall):
            additional_kwargs["function_call"] = dict(function_call)
        elif isinstance(function_call, dict):
            additional_kwargs["function_call"] = function_call

    if message.role == MessagesRole.SYSTEM:
        return SystemMessage(content=message.content)
    elif message.role == MessagesRole.USER:
        return HumanMessage(content=message.content)
    elif message.role == MessagesRole.ASSISTANT:
        return AIMessage(content=message.content, additional_kwargs=additional_kwargs)
    else:
        raise TypeError(f"Got unknown role {message.role} {message}")


def _convert_message_to_dict(message: gm.BaseMessage) -> gm.Messages:
    from gigachat.models import Messages, MessagesRole

    if isinstance(message, SystemMessage):
        return Messages(role=MessagesRole.SYSTEM, content=message.content)
    elif isinstance(message, HumanMessage):
        return Messages(role=MessagesRole.USER, content=message.content)
    elif isinstance(message, AIMessage):
        return Messages(
            role=MessagesRole.ASSISTANT,
            content=message.content,
            function_call=message.additional_kwargs.get("function_call", None),
        )
    elif isinstance(message, ChatMessage):
        return Messages(role=MessagesRole(message.role), content=message.content)
    elif isinstance(message, FunctionMessage):
        return Messages(role=MessagesRole.FUNCTION, content=message.content)
    else:
        raise TypeError(f"Got unknown type {message}")


def _convert_delta_to_message_chunk(
    _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
    role = _dict.get("role")
    content = _dict.get("content") or ""
    additional_kwargs: Dict = {}
    if _dict.get("function_call"):
        function_call = dict(_dict["function_call"])
        if "name" in function_call and function_call["name"] is None:
            function_call["name"] = ""
        additional_kwargs["function_call"] = function_call

    if role == "user" or default_class == HumanMessageChunk:
        return HumanMessageChunk(content=content)
    elif role == "assistant" or default_class == AIMessageChunk:
        return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
    elif role == "system" or default_class == SystemMessageChunk:
        return SystemMessageChunk(content=content)
    elif role == "function" or default_class == FunctionMessageChunk:
        return FunctionMessageChunk(content=content, name=_dict["name"])
    elif role or default_class == ChatMessageChunk:
        return ChatMessageChunk(content=content, role=role)  # type: ignore[arg-type]
    else:
        return default_class(content=content)  # type: ignore[call-arg]


class GigaChat(_BaseGigaChat, BaseChatModel):
    """`GigaChat` large language models API.

    To use, you should pass login and password to access GigaChat API or use token.

    Example:
        .. code-block:: python

            from langchain_community.chat_models import GigaChat
            giga = GigaChat(credentials=..., scope=..., verify_ssl_certs=False)
    """

    def _build_payload(self, messages: List[BaseMessage], **kwargs: Any) -> gm.Chat:
        from gigachat.models import Chat

        payload = Chat(
            messages=[_convert_message_to_dict(m) for m in messages],
        )

        payload.functions = kwargs.get("functions", None)
        payload.model = self.model

        if self.profanity_check is not None:
            payload.profanity_check = self.profanity_check
        if self.temperature is not None:
            payload.temperature = self.temperature
        if self.top_p is not None:
            payload.top_p = self.top_p
        if self.max_tokens is not None:
            payload.max_tokens = self.max_tokens
        if self.repetition_penalty is not None:
            payload.repetition_penalty = self.repetition_penalty
        if self.update_interval is not None:
            payload.update_interval = self.update_interval

        if self.verbose:
            logger.warning("Giga request: %s", payload.dict())

        return payload

    def _create_chat_result(self, response: Any) -> ChatResult:
        generations = []
        for res in response.choices:
            message = _convert_dict_to_message(res.message)
            finish_reason = res.finish_reason
            gen = ChatGeneration(
                message=message,
                generation_info={"finish_reason": finish_reason},
            )
            generations.append(gen)
            if finish_reason != "stop":
                logger.warning(
                    "Giga generation stopped with reason: %s",
                    finish_reason,
                )
            if self.verbose:
                logger.warning("Giga response: %s", message.content)
        llm_output = {"token_usage": response.usage, "model_name": response.model}
        return ChatResult(generations=generations, llm_output=llm_output)

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        stream: Optional[bool] = None,
        **kwargs: Any,
    ) -> ChatResult:
        should_stream = stream if stream is not None else self.streaming
        if should_stream:
            stream_iter = self._stream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return generate_from_stream(stream_iter)

        payload = self._build_payload(messages, **kwargs)
        response = self._client.chat(payload)

        return self._create_chat_result(response)

    async def _agenerate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        stream: Optional[bool] = None,
        **kwargs: Any,
    ) -> ChatResult:
        should_stream = stream if stream is not None else self.streaming
        if should_stream:
            stream_iter = self._astream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return await agenerate_from_stream(stream_iter)

        payload = self._build_payload(messages, **kwargs)
        response = await self._client.achat(payload)

        return self._create_chat_result(response)

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        payload = self._build_payload(messages, **kwargs)

        for chunk in self._client.stream(payload):
            if not isinstance(chunk, dict):
                chunk = chunk.dict()
            if len(chunk["choices"]) == 0:
                continue

            choice = chunk["choices"][0]
            content = choice.get("delta", {}).get("content", {})
            chunk = _convert_delta_to_message_chunk(choice["delta"], AIMessageChunk)

            finish_reason = choice.get("finish_reason")

            generation_info = (
                dict(finish_reason=finish_reason) if finish_reason is not None else None
            )

            if run_manager:
                run_manager.on_llm_new_token(content)

            yield ChatGenerationChunk(message=chunk, generation_info=generation_info)

    async def _astream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> AsyncIterator[ChatGenerationChunk]:
        payload = self._build_payload(messages, **kwargs)

        async for chunk in self._client.astream(payload):
            if not isinstance(chunk, dict):
                chunk = chunk.dict()
            if len(chunk["choices"]) == 0:
                continue

            choice = chunk["choices"][0]
            content = choice.get("delta", {}).get("content", {})
            chunk = _convert_delta_to_message_chunk(choice["delta"], AIMessageChunk)

            finish_reason = choice.get("finish_reason")

            generation_info = (
                dict(finish_reason=finish_reason) if finish_reason is not None else None
            )

            yield ChatGenerationChunk(message=chunk, generation_info=generation_info)
            if run_manager:
                await run_manager.on_llm_new_token(content)