File size: 8,513 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import json
import logging
from typing import Any, Dict, Iterator, List, Mapping, Optional, Union

import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    generate_from_stream,
)
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    ChatMessageChunk,
    HumanMessage,
    HumanMessageChunk,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import (
    convert_to_secret_str,
    get_from_dict_or_env,
)

logger = logging.getLogger(__name__)

DEFAULT_API_BASE = "https://api.coze.com"


def _convert_message_to_dict(message: BaseMessage) -> dict:
    message_dict: Dict[str, Any]
    if isinstance(message, HumanMessage):
        message_dict = {
            "role": "user",
            "content": message.content,
            "content_type": "text",
        }
    else:
        message_dict = {
            "role": "assistant",
            "content": message.content,
            "content_type": "text",
        }
    return message_dict


def _convert_dict_to_message(_dict: Mapping[str, Any]) -> Union[BaseMessage, None]:
    msg_type = _dict["type"]
    if msg_type != "answer":
        return None
    role = _dict["role"]
    if role == "user":
        return HumanMessage(content=_dict["content"])
    elif role == "assistant":
        return AIMessage(content=_dict.get("content", "") or "")
    else:
        return ChatMessage(content=_dict["content"], role=role)


def _convert_delta_to_message_chunk(_dict: Mapping[str, Any]) -> BaseMessageChunk:
    role = _dict.get("role")
    content = _dict.get("content") or ""

    if role == "user":
        return HumanMessageChunk(content=content)
    elif role == "assistant":
        return AIMessageChunk(content=content)
    else:
        return ChatMessageChunk(content=content, role=role)  # type: ignore[arg-type]


class ChatCoze(BaseChatModel):
    """ChatCoze chat models API by coze.com

    For more information, see https://www.coze.com/open/docs/chat
    """

    @property
    def lc_secrets(self) -> Dict[str, str]:
        return {
            "coze_api_key": "COZE_API_KEY",
        }

    @property
    def lc_serializable(self) -> bool:
        return True

    coze_api_base: str = Field(default=DEFAULT_API_BASE)
    """Coze custom endpoints"""
    coze_api_key: Optional[SecretStr] = None
    """Coze API Key"""
    request_timeout: int = Field(default=60, alias="timeout")
    """request timeout for chat http requests"""
    bot_id: str = Field(default="")
    """The ID of the bot that the API interacts with."""
    conversation_id: str = Field(default="")
    """Indicate which conversation the dialog is taking place in. If there is no need to
    distinguish the context of the conversation(just a question and answer), skip this
    parameter. It will be generated by the system."""
    user: str = Field(default="")
    """The user who calls the API to chat with the bot."""
    streaming: bool = False
    """Whether to stream the response to the client. 
    false: if no value is specified or set to false, a non-streaming response is
    returned. "Non-streaming response" means that all responses will be returned at once
    after they are all ready, and the client does not need to concatenate the content.
    true: set to true, partial message deltas will be sent .
    "Streaming response" will provide real-time response of the model to the client, and
    the client needs to assemble the final reply based on the type of message. """

    class Config:
        """Configuration for this pydantic object."""

        allow_population_by_field_name = True

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        values["coze_api_base"] = get_from_dict_or_env(
            values,
            "coze_api_base",
            "COZE_API_BASE",
            DEFAULT_API_BASE,
        )
        values["coze_api_key"] = convert_to_secret_str(
            get_from_dict_or_env(
                values,
                "coze_api_key",
                "COZE_API_KEY",
            )
        )

        return values

    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling Coze API."""
        return {
            "bot_id": self.bot_id,
            "conversation_id": self.conversation_id,
            "user": self.user,
            "streaming": self.streaming,
        }

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        if self.streaming:
            stream_iter = self._stream(
                messages=messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return generate_from_stream(stream_iter)

        r = self._chat(messages, **kwargs)
        res = r.json()
        if res["code"] != 0:
            raise ValueError(
                f"Error from Coze api response: {res['code']}: {res['msg']}, "
                f"logid: {r.headers.get('X-Tt-Logid')}"
            )

        return self._create_chat_result(res.get("messages") or [])

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        res = self._chat(messages, **kwargs)
        for chunk in res.iter_lines():
            chunk = chunk.decode("utf-8").strip("\r\n")
            parts = chunk.split("data:", 1)
            chunk = parts[1] if len(parts) > 1 else None
            if chunk is None:
                continue
            response = json.loads(chunk)
            if response["event"] == "done":
                break
            elif (
                response["event"] != "message"
                or response["message"]["type"] != "answer"
            ):
                continue
            chunk = _convert_delta_to_message_chunk(response["message"])
            cg_chunk = ChatGenerationChunk(message=chunk)
            if run_manager:
                run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
            yield cg_chunk

    def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response:
        parameters = {**self._default_params, **kwargs}

        query = ""
        chat_history = []
        for msg in messages:
            if isinstance(msg, HumanMessage):
                query = f"{msg.content}"  # overwrite, to get last user message as query
            chat_history.append(_convert_message_to_dict(msg))

        conversation_id = parameters.pop("conversation_id")
        bot_id = parameters.pop("bot_id")
        user = parameters.pop("user")
        streaming = parameters.pop("streaming")

        payload = {
            "conversation_id": conversation_id,
            "bot_id": bot_id,
            "user": user,
            "query": query,
            "stream": streaming,
        }
        if chat_history:
            payload["chat_history"] = chat_history

        url = self.coze_api_base + "/open_api/v2/chat"
        api_key = ""
        if self.coze_api_key:
            api_key = self.coze_api_key.get_secret_value()

        res = requests.post(
            url=url,
            timeout=self.request_timeout,
            headers={
                "Content-Type": "application/json",
                "Authorization": f"Bearer {api_key}",
            },
            json=payload,
            stream=streaming,
        )
        if res.status_code != 200:
            logid = res.headers.get("X-Tt-Logid")
            raise ValueError(f"Error from Coze api response: {res}, logid: {logid}")
        return res

    def _create_chat_result(self, messages: List[Mapping[str, Any]]) -> ChatResult:
        generations = []
        for c in messages:
            msg = _convert_dict_to_message(c)
            if msg:
                generations.append(ChatGeneration(message=msg))

        llm_output = {"token_usage": "", "model": ""}
        return ChatResult(generations=generations, llm_output=llm_output)

    @property
    def _llm_type(self) -> str:
        return "coze-chat"