Spaces:
Runtime error
Runtime error
File size: 9,987 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import json
import logging
from typing import Any, Dict, Iterator, List, Mapping, Optional, Type
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.chat_models import (
BaseChatModel,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
HumanMessage,
HumanMessageChunk,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import (
convert_to_secret_str,
get_from_dict_or_env,
get_pydantic_field_names,
)
logger = logging.getLogger(__name__)
DEFAULT_API_BASE = "https://api.baichuan-ai.com/v1/chat/completions"
def _convert_message_to_dict(message: BaseMessage) -> dict:
message_dict: Dict[str, Any]
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
else:
raise TypeError(f"Got unknown type {message}")
return message_dict
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
role = _dict["role"]
if role == "user":
return HumanMessage(content=_dict["content"])
elif role == "assistant":
return AIMessage(content=_dict.get("content", "") or "")
else:
return ChatMessage(content=_dict["content"], role=role)
def _convert_delta_to_message_chunk(
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
role = _dict.get("role")
content = _dict.get("content") or ""
if role == "user" or default_class == HumanMessageChunk:
return HumanMessageChunk(content=content)
elif role == "assistant" or default_class == AIMessageChunk:
return AIMessageChunk(content=content)
elif role or default_class == ChatMessageChunk:
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type]
else:
return default_class(content=content) # type: ignore[call-arg]
class ChatBaichuan(BaseChatModel):
"""Baichuan chat models API by Baichuan Intelligent Technology.
For more information, see https://platform.baichuan-ai.com/docs/api
"""
@property
def lc_secrets(self) -> Dict[str, str]:
return {
"baichuan_api_key": "BAICHUAN_API_KEY",
}
@property
def lc_serializable(self) -> bool:
return True
baichuan_api_base: str = Field(default=DEFAULT_API_BASE)
"""Baichuan custom endpoints"""
baichuan_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
"""Baichuan API Key"""
baichuan_secret_key: Optional[SecretStr] = None
"""[DEPRECATED, keeping it for for backward compatibility] Baichuan Secret Key"""
streaming: bool = False
"""Whether to stream the results or not."""
request_timeout: int = Field(default=60, alias="timeout")
"""request timeout for chat http requests"""
model = "Baichuan2-Turbo-192K"
"""model name of Baichuan, default is `Baichuan2-Turbo-192K`,
other options include `Baichuan2-Turbo`"""
temperature: Optional[float] = Field(default=0.3)
"""What sampling temperature to use."""
top_k: int = 5
"""What search sampling control to use."""
top_p: float = 0.85
"""What probability mass to use."""
with_search_enhance: bool = False
"""Whether to use search enhance, default is False."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for API call not explicitly specified."""
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
logger.warning(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
f"Instead they were passed in as part of `model_kwargs` parameter."
)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
values["baichuan_api_base"] = get_from_dict_or_env(
values,
"baichuan_api_base",
"BAICHUAN_API_BASE",
DEFAULT_API_BASE,
)
values["baichuan_api_key"] = convert_to_secret_str(
get_from_dict_or_env(
values,
"baichuan_api_key",
"BAICHUAN_API_KEY",
)
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Baichuan API."""
normal_params = {
"model": self.model,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"with_search_enhance": self.with_search_enhance,
"stream": self.streaming,
}
return {**normal_params, **self.model_kwargs}
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
stream_iter = self._stream(
messages=messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
res = self._chat(messages, **kwargs)
if res.status_code != 200:
raise ValueError(f"Error from Baichuan api response: {res}")
response = res.json()
return self._create_chat_result(response)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
res = self._chat(messages, **kwargs)
if res.status_code != 200:
raise ValueError(f"Error from Baichuan api response: {res}")
default_chunk_class = AIMessageChunk
for chunk in res.iter_lines():
chunk = chunk.decode("utf-8").strip("\r\n")
parts = chunk.split("data: ", 1)
chunk = parts[1] if len(parts) > 1 else None
if chunk is None:
continue
if chunk == "[DONE]":
break
response = json.loads(chunk)
for m in response.get("choices"):
chunk = _convert_delta_to_message_chunk(
m.get("delta"), default_chunk_class
)
default_chunk_class = chunk.__class__
cg_chunk = ChatGenerationChunk(message=chunk)
if run_manager:
run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
yield cg_chunk
def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response:
parameters = {**self._default_params, **kwargs}
model = parameters.pop("model")
headers = parameters.pop("headers", {})
temperature = parameters.pop("temperature", 0.3)
top_k = parameters.pop("top_k", 5)
top_p = parameters.pop("top_p", 0.85)
with_search_enhance = parameters.pop("with_search_enhance", False)
stream = parameters.pop("stream", False)
payload = {
"model": model,
"messages": [_convert_message_to_dict(m) for m in messages],
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"with_search_enhance": with_search_enhance,
"stream": stream,
}
url = self.baichuan_api_base
api_key = ""
if self.baichuan_api_key:
api_key = self.baichuan_api_key.get_secret_value()
res = requests.post(
url=url,
timeout=self.request_timeout,
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}",
**headers,
},
json=payload,
stream=self.streaming,
)
return res
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
generations = []
for c in response["choices"]:
message = _convert_dict_to_message(c["message"])
gen = ChatGeneration(message=message)
generations.append(gen)
token_usage = response["usage"]
llm_output = {"token_usage": token_usage, "model": self.model}
return ChatResult(generations=generations, llm_output=llm_output)
@property
def _llm_type(self) -> str:
return "baichuan-chat"
|