Spaces:
Runtime error
Runtime error
File size: 6,382 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# flake8: noqa
import os
import warnings
from typing import Any, Dict, List, Optional, Union
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.outputs import LLMResult
class DeepEvalCallbackHandler(BaseCallbackHandler):
"""Callback Handler that logs into deepeval.
Args:
implementation_name: name of the `implementation` in deepeval
metrics: A list of metrics
Raises:
ImportError: if the `deepeval` package is not installed.
Examples:
>>> from langchain_community.llms import OpenAI
>>> from langchain_community.callbacks import DeepEvalCallbackHandler
>>> from deepeval.metrics import AnswerRelevancy
>>> metric = AnswerRelevancy(minimum_score=0.3)
>>> deepeval_callback = DeepEvalCallbackHandler(
... implementation_name="exampleImplementation",
... metrics=[metric],
... )
>>> llm = OpenAI(
... temperature=0,
... callbacks=[deepeval_callback],
... verbose=True,
... openai_api_key="API_KEY_HERE",
... )
>>> llm.generate([
... "What is the best evaluation tool out there? (no bias at all)",
... ])
"Deepeval, no doubt about it."
"""
REPO_URL: str = "https://github.com/confident-ai/deepeval"
ISSUES_URL: str = f"{REPO_URL}/issues"
BLOG_URL: str = "https://docs.confident-ai.com" # noqa: E501
def __init__(
self,
metrics: List[Any],
implementation_name: Optional[str] = None,
) -> None:
"""Initializes the `deepevalCallbackHandler`.
Args:
implementation_name: Name of the implementation you want.
metrics: What metrics do you want to track?
Raises:
ImportError: if the `deepeval` package is not installed.
ConnectionError: if the connection to deepeval fails.
"""
super().__init__()
# Import deepeval (not via `import_deepeval` to keep hints in IDEs)
try:
import deepeval # ignore: F401,I001
except ImportError:
raise ImportError(
"""To use the deepeval callback manager you need to have the
`deepeval` Python package installed. Please install it with
`pip install deepeval`"""
)
if os.path.exists(".deepeval"):
warnings.warn(
"""You are currently not logging anything to the dashboard, we
recommend using `deepeval login`."""
)
# Set the deepeval variables
self.implementation_name = implementation_name
self.metrics = metrics
warnings.warn(
(
"The `DeepEvalCallbackHandler` is currently in beta and is subject to"
" change based on updates to `langchain`. Please report any issues to"
f" {self.ISSUES_URL} as an `integration` issue."
),
)
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Store the prompts"""
self.prompts = prompts
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Do nothing when a new token is generated."""
pass
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Log records to deepeval when an LLM ends."""
from deepeval.metrics.answer_relevancy import AnswerRelevancy
from deepeval.metrics.bias_classifier import UnBiasedMetric
from deepeval.metrics.metric import Metric
from deepeval.metrics.toxic_classifier import NonToxicMetric
for metric in self.metrics:
for i, generation in enumerate(response.generations):
# Here, we only measure the first generation's output
output = generation[0].text
query = self.prompts[i]
if isinstance(metric, AnswerRelevancy):
result = metric.measure(
output=output,
query=query,
)
print(f"Answer Relevancy: {result}") # noqa: T201
elif isinstance(metric, UnBiasedMetric):
score = metric.measure(output)
print(f"Bias Score: {score}") # noqa: T201
elif isinstance(metric, NonToxicMetric):
score = metric.measure(output)
print(f"Toxic Score: {score}") # noqa: T201
else:
raise ValueError(
f"""Metric {metric.__name__} is not supported by deepeval
callbacks."""
)
def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
"""Do nothing when LLM outputs an error."""
pass
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Do nothing when chain starts"""
pass
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Do nothing when chain ends."""
pass
def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
"""Do nothing when LLM chain outputs an error."""
pass
def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
**kwargs: Any,
) -> None:
"""Do nothing when tool starts."""
pass
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Do nothing when agent takes a specific action."""
pass
def on_tool_end(
self,
output: Any,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
"""Do nothing when tool ends."""
pass
def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
"""Do nothing when tool outputs an error."""
pass
def on_text(self, text: str, **kwargs: Any) -> None:
"""Do nothing"""
pass
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
"""Do nothing"""
pass
|