File size: 12,347 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
from __future__ import annotations

import importlib
from typing import (
    Any,
    AsyncIterator,
    Dict,
    Iterable,
    List,
    Mapping,
    Sequence,
    Union,
    overload,
)

from langchain_core.chat_sessions import ChatSession
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    FunctionMessage,
    HumanMessage,
    SystemMessage,
    ToolMessage,
)
from langchain_core.pydantic_v1 import BaseModel
from typing_extensions import Literal


async def aenumerate(
    iterable: AsyncIterator[Any], start: int = 0
) -> AsyncIterator[tuple[int, Any]]:
    """Async version of enumerate function."""
    i = start
    async for x in iterable:
        yield i, x
        i += 1


class IndexableBaseModel(BaseModel):
    """Allows a BaseModel to return its fields by string variable indexing."""

    def __getitem__(self, item: str) -> Any:
        return getattr(self, item)


class Choice(IndexableBaseModel):
    """Choice."""

    message: dict


class ChatCompletions(IndexableBaseModel):
    """Chat completions."""

    choices: List[Choice]


class ChoiceChunk(IndexableBaseModel):
    """Choice chunk."""

    delta: dict


class ChatCompletionChunk(IndexableBaseModel):
    """Chat completion chunk."""

    choices: List[ChoiceChunk]


def convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
    """Convert a dictionary to a LangChain message.

    Args:
        _dict: The dictionary.

    Returns:
        The LangChain message.
    """
    role = _dict.get("role")
    if role == "user":
        return HumanMessage(content=_dict.get("content", ""))
    elif role == "assistant":
        # Fix for azure
        # Also OpenAI returns None for tool invocations
        content = _dict.get("content", "") or ""
        additional_kwargs: Dict = {}
        if function_call := _dict.get("function_call"):
            additional_kwargs["function_call"] = dict(function_call)
        if tool_calls := _dict.get("tool_calls"):
            additional_kwargs["tool_calls"] = tool_calls
        return AIMessage(content=content, additional_kwargs=additional_kwargs)
    elif role == "system":
        return SystemMessage(content=_dict.get("content", ""))
    elif role == "function":
        return FunctionMessage(content=_dict.get("content", ""), name=_dict.get("name"))  # type: ignore[arg-type]
    elif role == "tool":
        additional_kwargs = {}
        if "name" in _dict:
            additional_kwargs["name"] = _dict["name"]
        return ToolMessage(
            content=_dict.get("content", ""),
            tool_call_id=_dict.get("tool_call_id"),  # type: ignore[arg-type]
            additional_kwargs=additional_kwargs,
        )
    else:
        return ChatMessage(content=_dict.get("content", ""), role=role)  # type: ignore[arg-type]


def convert_message_to_dict(message: BaseMessage) -> dict:
    """Convert a LangChain message to a dictionary.

    Args:
        message: The LangChain message.

    Returns:
        The dictionary.
    """
    message_dict: Dict[str, Any]
    if isinstance(message, ChatMessage):
        message_dict = {"role": message.role, "content": message.content}
    elif isinstance(message, HumanMessage):
        message_dict = {"role": "user", "content": message.content}
    elif isinstance(message, AIMessage):
        message_dict = {"role": "assistant", "content": message.content}
        if "function_call" in message.additional_kwargs:
            message_dict["function_call"] = message.additional_kwargs["function_call"]
            # If function call only, content is None not empty string
            if message_dict["content"] == "":
                message_dict["content"] = None
        if "tool_calls" in message.additional_kwargs:
            message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
            # If tool calls only, content is None not empty string
            if message_dict["content"] == "":
                message_dict["content"] = None
    elif isinstance(message, SystemMessage):
        message_dict = {"role": "system", "content": message.content}
    elif isinstance(message, FunctionMessage):
        message_dict = {
            "role": "function",
            "content": message.content,
            "name": message.name,
        }
    elif isinstance(message, ToolMessage):
        message_dict = {
            "role": "tool",
            "content": message.content,
            "tool_call_id": message.tool_call_id,
        }
    else:
        raise TypeError(f"Got unknown type {message}")
    if "name" in message.additional_kwargs:
        message_dict["name"] = message.additional_kwargs["name"]
    return message_dict


def convert_openai_messages(messages: Sequence[Dict[str, Any]]) -> List[BaseMessage]:
    """Convert dictionaries representing OpenAI messages to LangChain format.

    Args:
        messages: List of dictionaries representing OpenAI messages

    Returns:
        List of LangChain BaseMessage objects.
    """
    return [convert_dict_to_message(m) for m in messages]


def _convert_message_chunk(chunk: BaseMessageChunk, i: int) -> dict:
    _dict: Dict[str, Any] = {}
    if isinstance(chunk, AIMessageChunk):
        if i == 0:
            # Only shows up in the first chunk
            _dict["role"] = "assistant"
        if "function_call" in chunk.additional_kwargs:
            _dict["function_call"] = chunk.additional_kwargs["function_call"]
            # If the first chunk is a function call, the content is not empty string,
            # not missing, but None.
            if i == 0:
                _dict["content"] = None
        else:
            _dict["content"] = chunk.content
    else:
        raise ValueError(f"Got unexpected streaming chunk type: {type(chunk)}")
    # This only happens at the end of streams, and OpenAI returns as empty dict
    if _dict == {"content": ""}:
        _dict = {}
    return _dict


def _convert_message_chunk_to_delta(chunk: BaseMessageChunk, i: int) -> Dict[str, Any]:
    _dict = _convert_message_chunk(chunk, i)
    return {"choices": [{"delta": _dict}]}


class ChatCompletion:
    """Chat completion."""

    @overload
    @staticmethod
    def create(
        messages: Sequence[Dict[str, Any]],
        *,
        provider: str = "ChatOpenAI",
        stream: Literal[False] = False,
        **kwargs: Any,
    ) -> dict:
        ...

    @overload
    @staticmethod
    def create(
        messages: Sequence[Dict[str, Any]],
        *,
        provider: str = "ChatOpenAI",
        stream: Literal[True],
        **kwargs: Any,
    ) -> Iterable:
        ...

    @staticmethod
    def create(
        messages: Sequence[Dict[str, Any]],
        *,
        provider: str = "ChatOpenAI",
        stream: bool = False,
        **kwargs: Any,
    ) -> Union[dict, Iterable]:
        models = importlib.import_module("langchain.chat_models")
        model_cls = getattr(models, provider)
        model_config = model_cls(**kwargs)
        converted_messages = convert_openai_messages(messages)
        if not stream:
            result = model_config.invoke(converted_messages)
            return {"choices": [{"message": convert_message_to_dict(result)}]}
        else:
            return (
                _convert_message_chunk_to_delta(c, i)
                for i, c in enumerate(model_config.stream(converted_messages))
            )

    @overload
    @staticmethod
    async def acreate(
        messages: Sequence[Dict[str, Any]],
        *,
        provider: str = "ChatOpenAI",
        stream: Literal[False] = False,
        **kwargs: Any,
    ) -> dict:
        ...

    @overload
    @staticmethod
    async def acreate(
        messages: Sequence[Dict[str, Any]],
        *,
        provider: str = "ChatOpenAI",
        stream: Literal[True],
        **kwargs: Any,
    ) -> AsyncIterator:
        ...

    @staticmethod
    async def acreate(
        messages: Sequence[Dict[str, Any]],
        *,
        provider: str = "ChatOpenAI",
        stream: bool = False,
        **kwargs: Any,
    ) -> Union[dict, AsyncIterator]:
        models = importlib.import_module("langchain.chat_models")
        model_cls = getattr(models, provider)
        model_config = model_cls(**kwargs)
        converted_messages = convert_openai_messages(messages)
        if not stream:
            result = await model_config.ainvoke(converted_messages)
            return {"choices": [{"message": convert_message_to_dict(result)}]}
        else:
            return (
                _convert_message_chunk_to_delta(c, i)
                async for i, c in aenumerate(model_config.astream(converted_messages))
            )


def _has_assistant_message(session: ChatSession) -> bool:
    """Check if chat session has an assistant message."""
    return any([isinstance(m, AIMessage) for m in session["messages"]])


def convert_messages_for_finetuning(
    sessions: Iterable[ChatSession],
) -> List[List[dict]]:
    """Convert messages to a list of lists of dictionaries for fine-tuning.

    Args:
        sessions: The chat sessions.

    Returns:
        The list of lists of dictionaries.
    """
    return [
        [convert_message_to_dict(s) for s in session["messages"]]
        for session in sessions
        if _has_assistant_message(session)
    ]


class Completions:
    """Completions."""

    @overload
    @staticmethod
    def create(
        messages: Sequence[Dict[str, Any]],
        *,
        provider: str = "ChatOpenAI",
        stream: Literal[False] = False,
        **kwargs: Any,
    ) -> ChatCompletions:
        ...

    @overload
    @staticmethod
    def create(
        messages: Sequence[Dict[str, Any]],
        *,
        provider: str = "ChatOpenAI",
        stream: Literal[True],
        **kwargs: Any,
    ) -> Iterable:
        ...

    @staticmethod
    def create(
        messages: Sequence[Dict[str, Any]],
        *,
        provider: str = "ChatOpenAI",
        stream: bool = False,
        **kwargs: Any,
    ) -> Union[ChatCompletions, Iterable]:
        models = importlib.import_module("langchain.chat_models")
        model_cls = getattr(models, provider)
        model_config = model_cls(**kwargs)
        converted_messages = convert_openai_messages(messages)
        if not stream:
            result = model_config.invoke(converted_messages)
            return ChatCompletions(
                choices=[Choice(message=convert_message_to_dict(result))]
            )
        else:
            return (
                ChatCompletionChunk(
                    choices=[ChoiceChunk(delta=_convert_message_chunk(c, i))]
                )
                for i, c in enumerate(model_config.stream(converted_messages))
            )

    @overload
    @staticmethod
    async def acreate(
        messages: Sequence[Dict[str, Any]],
        *,
        provider: str = "ChatOpenAI",
        stream: Literal[False] = False,
        **kwargs: Any,
    ) -> ChatCompletions:
        ...

    @overload
    @staticmethod
    async def acreate(
        messages: Sequence[Dict[str, Any]],
        *,
        provider: str = "ChatOpenAI",
        stream: Literal[True],
        **kwargs: Any,
    ) -> AsyncIterator:
        ...

    @staticmethod
    async def acreate(
        messages: Sequence[Dict[str, Any]],
        *,
        provider: str = "ChatOpenAI",
        stream: bool = False,
        **kwargs: Any,
    ) -> Union[ChatCompletions, AsyncIterator]:
        models = importlib.import_module("langchain.chat_models")
        model_cls = getattr(models, provider)
        model_config = model_cls(**kwargs)
        converted_messages = convert_openai_messages(messages)
        if not stream:
            result = await model_config.ainvoke(converted_messages)
            return ChatCompletions(
                choices=[Choice(message=convert_message_to_dict(result))]
            )
        else:
            return (
                ChatCompletionChunk(
                    choices=[ChoiceChunk(delta=_convert_message_chunk(c, i))]
                )
                async for i, c in aenumerate(model_config.astream(converted_messages))
            )


class Chat:
    """Chat."""

    def __init__(self) -> None:
        self.completions = Completions()


chat = Chat()