pip install streamlit import streamlit as st from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score # Page Title st.title("Machine Learning Life Cycle in Streamlit") # Buttons for each stage if st.button("1. Data Collection"): st.header("Data Collection") st.write("Using Iris dataset for demonstration.") data = load_iris(as_frame=True) st.write(data.frame.head()) elif st.button("2. Data Preprocessing"): st.header("Data Preprocessing") st.write("Splitting the data into train and test sets.") data = load_iris(as_frame=True) X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42) st.write(f"Train size: {len(X_train)}; Test size: {len(X_test)}") elif st.button("3. Model Training"): st.header("Model Training") st.write("Training a Random Forest Classifier.") data = load_iris(as_frame=True) X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42) model = RandomForestClassifier() model.fit(X_train, y_train) st.write("Model trained successfully.") elif st.button("4. Model Evaluation"): st.header("Model Evaluation") st.write("Evaluating the model on the test data.") data = load_iris(as_frame=True) X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42) model = RandomForestClassifier() model.fit(X_train, y_train) predictions = model.predict(X_test) accuracy = accuracy_score(y_test, predictions) st.write(f"Accuracy: {accuracy:.2f}") elif st.button("5. Model Deployment"): st.header("Model Deployment") st.write("This step involves deploying the model for usage.") st.write("You can expose the model via APIs or integrate it into an application.") else: st.write("Use the buttons above to navigate through the Machine Learning life cycle.")