File size: 2,502 Bytes
3c5281e
 
9efab78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c5281e
9efab78
 
f14a6d8
9efab78
a16cef5
 
9a4562b
 
e4963dc
9efab78
 
 
975e57d
9efab78
e4963dc
9efab78
 
 
46ffc42
 
e4963dc
9efab78
 
 
46ffc42
9efab78
e4963dc
9efab78
 
 
9a4562b
 
e4963dc
9efab78
 
 
46ffc42
9efab78
e4963dc
1f0896e
 
 
9a4562b
d4094f5
e74b1af
d4094f5
 
 
 
 
e4963dc
dcc41c4
 
 
 
9a4562b
3c5281e
 
9efab78
 
46ffc42
9efab78
3ac1506
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import streamlit as st

# CSS style for the table
css_style = """
<style>
table {
    width: 100%;
    border-collapse: collapse;
    border: 1px solid black;
}

th {
    background-color: #f2f2f2;
    border: 1px solid black;
    padding: 10px;
    text-align: center;
}

td {
    border: 1px solid black;
    padding: 10px;
}

tr:nth-child(even) {
    background-color: #f9f9f9;
}

tr:nth-child(odd) {
    background-color: #ffffff;
}
</style>
"""

# HTML code for the differences table
html_code = """
<table>
    <tr>
        <th>S.no</th>
        <th>Aspect</th>
        <th>Machine Learning (ML)πŸ“πŸ’»</th>
        <th>Deep Learning (DL)πŸ“πŸ’»</th>
    </tr>
    <tr>
        <td>1</td>
        <td>Definition</td>
        <td>A subset of AI focused on enabling systems to learn from data.</td>
        <td>A subset of ML that uses neural networks to process data.</td>
        </tr>
    <tr>
        <td>2</td>
        <td>Data Dependency</td>
        <td>Performs well on small to medium-sized datasets.</td>
        <td>Requires large datasets to perform effectively.</td>
    </tr>
    <tr>
        <td>3</td>
        <td>Model Complexity</td>
        <td>Uses simple algorithms like linear regression or decision trees.</td>
        <td>Utilizes complex architectures like CNNs and RNNs.</td>
    </tr>
    <tr>
        <td>4</td>
        <td>Computation Power</td>
        <td>Less computationally intensive.</td>
        <td>Highly computationally intensive, often requires GPUs.</td>
    </tr>
    <tr>
        <td>5</td>
        <td>Feature Engineering</td>
        <td>Feature engineering is essential for performance.</td>
        <td>Automatically learns features from data.</td>
    </tr>
    <tr>
    <td>6</td>
    <td>Applications</td>
    <td>Fraud detection, recommendation systems, etc.</td>
    <td>Image recognition, natural language processing, etc.</td>
    </tr>
    <tr>
        <td>7</td>
        <td>  Training Time taken</td>
        <td>Typically faster to train due to simpler algorithms</td>
        <td> Takes longer to train due to the complexity of models and data size.</td>
    </tr>
    <tr>
        <td>8</td>
        <td> Interpretability</td>
        <td> Easier to interpret and debug.</td>
        <td> Acts as a "black box," making it harder to interpret results.</td>
    </tr>
</table>
"""

# Inject CSS into Streamlit
st.markdown(css_style, unsafe_allow_html=True)

# Render the HTML in Streamlit
st.markdown(html_code, unsafe_allow_html=True)