File size: 17,485 Bytes
6d11371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import feedparser
import time
import logging
import re
import ssl
import requests
from datetime import datetime, timedelta
from threading import Timer
from urllib.parse import urlparse
from concurrent.futures import ThreadPoolExecutor, as_completed

logger = logging.getLogger("misinformation_detector")

# Disable SSL certificate verification for feeds with self-signed certs
ssl._create_default_https_context = ssl._create_unverified_context

# List of RSS feeds to check for news
# These are popular news sources with reliable and frequently updated RSS feeds
RSS_FEEDS = [
# --------------------
# ๐ŸŒ General World News
# --------------------
"http://rss.cnn.com/rss/cnn_world.rss",                         # CNN World News
"https://rss.nytimes.com/services/xml/rss/nyt/World.xml",      # NYT World News
"https://feeds.washingtonpost.com/rss/world",                  # The Washington Post World News
"https://feeds.bbci.co.uk/news/world/rss.xml",                 # BBC News - World

# --------------------
# ๐Ÿง  Tech & Startup News (Global)
# --------------------
"https://techcrunch.com/feed/",                                # TechCrunch - Startup and Technology News
"https://venturebeat.com/feed/",                               # VentureBeat - Tech News
"https://www.wired.com/feed/rss",                              # Wired - Technology News
"https://www.cnet.com/rss/news/",                              # CNET - Technology News
"https://news.google.com/rss?gl=IN&ceid=IN:en&topic=t&hl=en-IN",  # Google News India - Technology
"https://news.google.com/rss?gl=US&ceid=US:en&topic=t&hl=en-US",  # Google News US - Technology

# --------------------
# ๐Ÿ’ผ Startup & VC Focused
# --------------------
"https://news.crunchbase.com/feed/",                           # Crunchbase News - Startup Funding
"https://techstartups.com/feed/",                              # Tech Startups - Startup News

# --------------------
# ๐Ÿ“ฐ Global Business & Corporate Feeds
# --------------------
"https://feeds.bloomberg.com/technology/news.rss",             # Bloomberg Technology News
"https://www.ft.com/technology?format=rss",                    # Financial Times Technology News
"https://news.google.com/rss?gl=IN&ceid=IN:en&topic=b&hl=en-IN",  # Google News India - Business

# --------------------
# ๐Ÿ‡ฎ๐Ÿ‡ณ India-specific News
# --------------------
"https://inc42.com/feed/",                                     # Inc42 - Indian Startups and Technology
"https://timesofindia.indiatimes.com/rssfeedstopstories.cms",           # TOI - Top Stories
"https://timesofindia.indiatimes.com/rssfeedmostrecent.cms",            # TOI - Most Recent Stories
"https://timesofindia.indiatimes.com/rssfeeds/-2128936835.cms",         # TOI - India News
"https://timesofindia.indiatimes.com/rssfeeds/296589292.cms",           # TOI - World News
"https://timesofindia.indiatimes.com/rssfeeds/1898055.cms",             # TOI - Business News
"https://timesofindia.indiatimes.com/rssfeeds/54829575.cms",            # TOI - Cricket News
"https://timesofindia.indiatimes.com/rssfeeds/4719148.cms",             # TOI - Sports News
"https://timesofindia.indiatimes.com/rssfeeds/-2128672765.cms",         # TOI - Science News

# --------------------
# ๐Ÿ Sports News (Global + Cricket)
# --------------------
"https://www.espn.com/espn/rss/news",                          # ESPN - Top Sports News
"https://feeds.skynews.com/feeds/rss/sports.xml",              # Sky News - Sports
"https://sports.ndtv.com/rss/all",                                 # NDTV Sports
"https://www.espncricinfo.com/rss/content/story/feeds/0.xml",  # ESPN Cricinfo - Cricket News

# --------------------
# โœ… Fact-Checking Sources
# --------------------
"https://www.snopes.com/feed/",                                # Snopes - Fact Checking
"https://www.politifact.com/rss/all/",                         # PolitiFact - Fact Checking
"https://www.factcheck.org/feed/",                             # FactCheck - Fact Checking
"https://leadstories.com/atom.xml",                            # Lead Stories - Fact Checking
"https://fullfact.org/feed/all/",                              # Full Fact - Fact Checking
"https://www.truthorfiction.com/feed/",                         # TruthOrFiction - Fact Checking

# --------------------
# ๐Ÿ—ณ๏ธ Politics & Policy (General)
# --------------------
"https://feeds.bbci.co.uk/news/politics/rss.xml",              # BBC News - Politics
"https://feeds.bbci.co.uk/news/science_and_environment/rss.xml",  # BBC - Science & Environment

# --------------------
# ๐Ÿ—ณ๏ธ Science
# --------------------
"https://www.nature.com/nature.rss",                              # Nature science
"https://feeds.science.org/rss/science-advances.xml"              # science.org
]

def clean_html(raw_html):
    """Remove HTML tags from text"""
    if not raw_html:
        return ""
    clean_regex = re.compile('<.*?>')
    clean_text = re.sub(clean_regex, '', raw_html)
    # Remove extra whitespace
    clean_text = re.sub(r'\s+', ' ', clean_text).strip()
    return clean_text

def parse_feed(feed_url, timeout=5):
    """
    Parse a single RSS feed with proper timeout handling
    Uses requests with timeout first, then passes content to feedparser
    """
    try:
        # Use requests with timeout to fetch the RSS content
        response = requests.get(feed_url, timeout=timeout)
        response.raise_for_status()
        
        # Then parse the content with feedparser (which doesn't support timeout)
        feed = feedparser.parse(response.content)
        
        # Basic validation of the feed
        if hasattr(feed, 'entries') and feed.entries:
            return feed
        else:
            logger.warning(f"Feed {feed_url} parsed but contains no entries")
            return None
            
    except requests.exceptions.Timeout:
        logger.warning(f"Timeout while fetching feed {feed_url}")
        return None
    except requests.exceptions.RequestException as e:
        logger.error(f"Request error fetching feed {feed_url}: {str(e)}")
        return None
    except Exception as e:
        logger.error(f"Error parsing feed {feed_url}: {str(e)}")
        return None

def fetch_all_feeds(feeds_list=None, max_workers=5, timeout=5):
    """
    Fetch multiple RSS feeds with proper timeout handling
    Returns a list of (domain, feed) tuples for successfully fetched feeds
    """
    # Use default RSS_FEEDS list if none provided
    if feeds_list is None:
        feeds_list = RSS_FEEDS
    
    results = []
    
    with ThreadPoolExecutor(max_workers=max_workers) as executor:
        future_to_url = {executor.submit(parse_feed, url, timeout): url for url in feeds_list}
        for future in as_completed(future_to_url):
            url = future_to_url[future]
            try:
                feed = future.result()
                if feed and hasattr(feed, 'entries') and feed.entries:
                    # Extract domain for source attribution
                    domain = urlparse(url).netloc
                    results.append((domain, feed))
                    logger.info(f"Successfully fetched {domain} with {len(feed.entries)} entries")
            except Exception as e:
                logger.error(f"Error processing {url}: {str(e)}")
    
    return results

def extract_date(entry):
    """Extract and normalize publication date from entry"""
    for date_field in ['published_parsed', 'updated_parsed', 'created_parsed']:
        if hasattr(entry, date_field) and getattr(entry, date_field):
            try:
                # Convert time tuple to datetime
                time_tuple = getattr(entry, date_field)
                return datetime(time_tuple[0], time_tuple[1], time_tuple[2], 
                               time_tuple[3], time_tuple[4], time_tuple[5])
            except Exception as e:
                logger.debug(f"Error parsing {date_field}: {e}")
                continue
    
    # Try string dates
    for date_field in ['published', 'updated', 'pubDate']:
        if hasattr(entry, date_field) and getattr(entry, date_field):
            try:
                date_str = getattr(entry, date_field)
                # Try various formats
                for fmt in ['%a, %d %b %Y %H:%M:%S %z', '%a, %d %b %Y %H:%M:%S %Z', 
                           '%Y-%m-%dT%H:%M:%SZ', '%Y-%m-%dT%H:%M:%S%z']:
                    try:
                        return datetime.strptime(date_str, fmt)
                    except:
                        continue
            except Exception as e:
                logger.debug(f"Error parsing date string {date_field}: {e}")
                continue
    
    # Default to current time if parsing fails
    return datetime.now()

def is_recent(entry_date, claim=None, max_days=3):
    """
    Check if an entry is recent based on temporal indicators in the claim.
    
    Args:
        entry_date (datetime): The date of the entry to check
        claim (str, optional): The claim text to analyze for temporal indicators
        max_days (int, optional): Default maximum age in days
        
    Returns:
        bool: True if entry is considered recent, False otherwise
    """
    if not entry_date:
        return False
    
    # Default max days if no claim is provided
    default_days = max_days
    extended_days = 15  # For 'recently', 'this week', etc.
    
    if claim:
        # Specific day indicators get default days
        specific_day_terms = ["today", "yesterday", "day before yesterday"]
        
        # Extended time terms get extended days
        extended_time_terms = [
            "recently", "currently", "freshly", "this week", "few days", 
            "couple of days", "last week", "past week", "several days",
            "anymore"
        ]
        
        claim_lower = claim.lower()
        
        # Check for extended time terms first, then specific day terms
        if any(term in claim_lower for term in extended_time_terms):
            cutoff = datetime.now() - timedelta(days=extended_days)
            return entry_date > cutoff
        elif any(term in claim_lower for term in specific_day_terms):
            cutoff = datetime.now() - timedelta(days=default_days)
            return entry_date > cutoff
    
    # Default case - use standard window
    cutoff = datetime.now() - timedelta(days=default_days)
    return entry_date > cutoff

def get_entry_relevance(entry, query_terms, domain):
    """Calculate relevance score for an entry based on query match and recency"""
    if not hasattr(entry, 'title') or not entry.title:
        return 0
    
    # Extract text content
    title = entry.title or ""
    description = clean_html(entry.description) if hasattr(entry, 'description') else ""
    content = ""
    if hasattr(entry, 'content'):
        for content_item in entry.content:
            if 'value' in content_item:
                content += clean_html(content_item['value']) + " "
    
    # Extract published date
    pub_date = extract_date(entry)
    
    # Calculate recency score (0-1)
    recency_score = 0
    if pub_date:
        days_old = (datetime.now() - pub_date).days
        if days_old <= 1:  # Today or yesterday
            recency_score = 1.0
        elif days_old <= 2:
            recency_score = 0.8
        elif days_old <= 3:
            recency_score = 0.5
        else:
            recency_score = 0.2
    
    # Calculate relevance score based on keyword matches
    text = f"{title} {description} {content}".lower()
    
    # Count how many query terms appear in the content
    query_terms_lower = [term.lower() for term in query_terms]
    matches = sum(1 for term in query_terms_lower if term in text)
    
    # Calculate match score (0-1)
    match_score = min(1.0, matches / max(1, len(query_terms) * 0.7))
    
    # Boost score for exact phrase matches
    query_phrase = " ".join(query_terms_lower)
    if query_phrase in text:
        match_score += 0.5
    
    # Additional boost for title matches (they're more relevant)
    title_matches = sum(1 for term in query_terms_lower if term in title.lower())
    if title_matches > 0:
        match_score += 0.2 * (title_matches / len(query_terms_lower))
    
    # Source quality factor (can be adjusted based on source reliability)
    source_factor = 1.0
    high_quality_domains = ['bbc.co.uk', 'nytimes.com', 'reuters.com', 'washingtonpost.com', 
                           'espncricinfo.com', 'cricbuzz.com', 'snopes.com']
    if any(quality_domain in domain for quality_domain in high_quality_domains):
        source_factor = 1.2
    
    # Calculate final score
    final_score = (match_score * 0.6) + (recency_score * 0.4) * source_factor
    
    return min(1.0, final_score)  # Cap at 1.0

def retrieve_evidence_from_rss(claim, max_results=10, category_feeds=None):
    """
    Retrieve evidence from RSS feeds for a given claim
    
    Args:
        claim (str): The claim to verify
        max_results (int): Maximum number of results to return
        category_feeds (list, optional): List of category-specific RSS feeds to check
        
    Returns:
        list: List of relevant evidence items
    """
    start_time = time.time()
    logger.info(f"Retrieving evidence from RSS feeds for: {claim}")
    
    # Extract key terms from claim
    terms = [term.strip() for term in re.findall(r'\b\w+\b', claim) if len(term.strip()) > 2]
    
    try:
        # Use category-specific feeds if provided
        feeds_to_use = category_feeds if category_feeds else RSS_FEEDS
        
        # Log which feeds we're using
        if category_feeds:
            logger.info(f"Using {len(category_feeds)} category-specific RSS feeds")
        else:
            logger.info(f"Using {len(RSS_FEEDS)} default RSS feeds")
        
        # Limit the number of feeds to process for efficiency
        if len(feeds_to_use) > 10:
            # If we have too many feeds, select a subset
            # Prioritize fact-checking sources
            fact_check_feeds = [feed for feed in feeds_to_use if "fact" in feed.lower() or "snopes" in feed.lower() or "politifact" in feed.lower()]
            other_feeds = [feed for feed in feeds_to_use if feed not in fact_check_feeds]
            
            # Take all fact-checking feeds plus a random selection of others
            import random
            selected_feeds = fact_check_feeds + random.sample(other_feeds, min(10 - len(fact_check_feeds), len(other_feeds)))
        else:
            selected_feeds = feeds_to_use
            
        # Fetch all feeds in parallel with the selected feeds
        feeds = fetch_all_feeds(selected_feeds)
        
        if not feeds:
            logger.warning("No RSS feeds could be fetched")
            return []
        
        all_entries = []
        
        # Process all feed entries
        for domain, feed in feeds:
            for entry in feed.entries:
                # Calculate relevance score
                relevance = get_entry_relevance(entry, terms, domain)
                
                if relevance > 0.3:  # Only consider somewhat relevant entries
                    # Extract entry details
                    title = entry.title if hasattr(entry, 'title') else "No title"
                    link = entry.link if hasattr(entry, 'link') else ""
                    
                    # Extract and clean description/content
                    description = ""
                    if hasattr(entry, 'description'):
                        description = clean_html(entry.description)
                    elif hasattr(entry, 'summary'):
                        description = clean_html(entry.summary)
                    elif hasattr(entry, 'content'):
                        for content_item in entry.content:
                            if 'value' in content_item:
                                description += clean_html(content_item['value']) + " "
                    
                    # Truncate description if too long
                    if len(description) > 1000:
                        description = description[:1000] + "..."
                    
                    # Get publication date
                    pub_date = extract_date(entry)
                    date_str = pub_date.strftime('%Y-%m-%d') if pub_date else "Unknown date"
                    
                    # Format as evidence text
                    evidence_text = (
                        f"Title: {title}, "
                        f"Source: {domain} (RSS), "
                        f"Date: {date_str}, "
                        f"URL: {link}, "
                        f"Content: {description}"
                    )
                    
                    all_entries.append({
                        "text": evidence_text,
                        "relevance": relevance,
                        "date": pub_date or datetime.now()
                    })
        
        # Sort entries by relevance
        all_entries.sort(key=lambda x: x["relevance"], reverse=True)
        
        # Take top results
        top_entries = all_entries[:max_results]
        
        logger.info(f"Retrieved {len(top_entries)} relevant RSS items from {len(feeds)} feeds in {time.time() - start_time:.2f}s")
        
        # Return just the text portion
        return [entry["text"] for entry in top_entries]
    
    except Exception as e:
        logger.error(f"Error in RSS retrieval: {str(e)}")
        return []