Spaces:
Running
Running
File size: 20,893 Bytes
6d11371 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
import logging
import re
from utils.models import get_llm_model, get_nlp_model
from utils.performance import PerformanceTracker
logger = logging.getLogger("misinformation_detector")
performance_tracker = PerformanceTracker()
def classify_with_llm(query, evidence):
"""
Classification function that evaluates evidence against a claim
to determine support, contradiction, or insufficient evidence.
This function analyzes the provided evidence to evaluate if it supports,
contradicts, or is insufficient to verify the claim. It implements:
- Strict output formatting requirements
- Evidence source validation
- Confidence scoring based on confirmation strength
- Flexible regex pattern matching
- Detailed debug logging
- Fallback parsing for non-standard responses
Args:
query (str): The factual claim being verified
evidence (list): Evidence items to evaluate against the claim
Returns:
list: Classification results with labels and confidence scores
"""
logger.info(f"Classifying evidence for claim: {query}")
# Get the LLM model
llm_model = get_llm_model()
# Skip if no evidence
if not evidence:
logger.warning("No evidence provided for classification")
return []
# Normalize evidence to a list
if not isinstance(evidence, list):
if evidence:
try:
evidence = [evidence]
except Exception as e:
logger.error(f"Could not convert evidence to list: {e}")
return []
else:
return []
# Extract essential claim components for improved keyword detection
claim_components = extract_claim_keywords(query)
essential_keywords = claim_components.get("keywords", [])
essential_entities = claim_components.get("entities", [])
# Ensure processing is limited to top 10 evidence items to reduce token usage
evidence = evidence[:10]
# Validate evidence for verifiable sources
validated_evidence = []
for idx, chunk in enumerate(evidence):
# Basic evidence validation
if not isinstance(chunk, str) or not chunk.strip():
continue
# Check if evidence contains source information
has_valid_source = False
if "URL:" in chunk and ("http://" in chunk or "https://" in chunk):
has_valid_source = True
elif "Source:" in chunk and len(chunk.split("Source:")[1].strip()) > 3:
has_valid_source = True
# Add validation flag to evidence
validated_evidence.append({
"text": chunk,
"index": idx + 1,
"has_valid_source": has_valid_source
})
# If no valid evidence remains, return early
if not validated_evidence:
logger.warning("No valid evidence items to classify")
return []
try:
# Format evidence items with validation information
evidence_text = ""
for item in validated_evidence:
# Truncate long evidence
chunk_text = item["text"]
if len(chunk_text) > 1000:
chunk_text = chunk_text[:1000] + "..."
# Include validation status in the prompt
source_status = "WITH VALID SOURCE" if item["has_valid_source"] else "WARNING: NO CLEAR SOURCE"
evidence_text += f"EVIDENCE {item['index']}:\n{chunk_text}\n[{source_status}]\n\n"
# Create a structured prompt with explicit format instructions and validation requirements
prompt = f"""
CLAIM: {query}
EVIDENCE:
{evidence_text}
TASK: Evaluate if each evidence supports, contradicts, or is insufficient/irrelevant to the claim.
INSTRUCTIONS:
1. For each evidence, provide your analysis in EXACTLY this format:
EVIDENCE [number] ANALYSIS:
Classification: [Choose exactly one: support/contradict/insufficient]
Confidence: [number between 0-100]
Reason: [brief explanation]
2. Support = Evidence EXPLICITLY confirms ALL parts of the claim are true
3. Contradict = Evidence EXPLICITLY confirms the claim is false
4. Insufficient = Evidence is irrelevant, ambiguous, or doesn't provide enough information
CRITICAL VALIDATION RULES:
- Mark as "support" ONLY when evidence EXPLICITLY mentions ALL key entities AND actions from the claim
- Do not label evidence as "support" if it only discusses the same topic without confirming the specific claim
- Do not make inferential leaps - if the evidence doesn't explicitly state the claim, mark as "insufficient"
- Assign LOW confidence (0-50) when evidence doesn't explicitly mention all claim elements
- Assign ZERO confidence (0) to evidence without valid sources
- If evidence describes similar but different events, mark as "insufficient", not "support" or "contradict"
- If evidence describes the same topic as the claim but does not confirm or contradict the claim, mark as "insufficient", not "support" or "contradict"
- If evidence is in a different language or unrelated topic, mark as "insufficient" with 0 confidence
- Check that all entities (names, places, dates, numbers) in the claim are explicitly confirmed
FOCUS ON THE EXACT CLAIM ONLY.
ESSENTIAL KEYWORDS TO LOOK FOR: {', '.join(essential_keywords)}
ESSENTIAL ENTITIES TO VERIFY: {', '.join(essential_entities)}
IMPORTANT NOTE ABOUT VERB TENSES: When analyzing this claim, treat present tense verbs (like "unveils")
and perfect form verbs (like "has unveiled") as equivalent to their simple past tense forms
(like "unveiled"). The tense variation should not affect your classification decision.
"""
# Get response with temperature=0 for consistency
result = llm_model.invoke(prompt, temperature=0)
result_text = result.content.strip()
# Log the raw LLM response for debugging
logger.debug(f"Raw LLM classification response:\n{result_text}")
# Define a more flexible regex pattern matching the requested format
# This pattern accommodates variations in whitespace and formatting
analysis_pattern = r'EVIDENCE\s+(\d+)\s+ANALYSIS:[\s\n]*Classification:[\s\n]*(support|contradict|insufficient)[\s\n]*Confidence:[\s\n]*(\d+)[\s\n]*Reason:[\s\n]*(.*?)(?=[\s\n]*EVIDENCE\s+\d+\s+ANALYSIS:|[\s\n]*$)'
# Parse each evidence analysis
classification_results = []
# Try matching with our pattern
matches = list(re.finditer(analysis_pattern, result_text, re.IGNORECASE | re.DOTALL))
# Log match information for debugging
logger.debug(f"Found {len(matches)} structured evidence analyses in response")
# Process matches
for match in matches:
try:
evidence_idx = int(match.group(1)) - 1
classification = match.group(2).lower()
confidence = int(match.group(3)) / 100.0 # Convert to 0-1 scale
reason = match.group(4).strip()
# Check if this evidence item exists in our original list
if 0 <= evidence_idx < len(evidence):
# Get the original evidence text
evidence_text = evidence[evidence_idx]
# Check for valid source
source_valid = False
if "URL:" in evidence_text and ("http://" in evidence_text or "https://" in evidence_text):
source_valid = True
elif "Source:" in evidence_text:
source_valid = True
# Reduce confidence for evidence without valid sources
if not source_valid and confidence > 0.3:
confidence = 0.3
reason += " (Confidence reduced due to lack of verifiable source)"
# Create result entry
classification_results.append({
"label": classification,
"confidence": confidence,
"evidence": evidence_text,
"reason": reason
})
except (ValueError, IndexError) as e:
logger.error(f"Error parsing evidence analysis: {e}")
# If no structured matches were found, try using a simpler approach
if not classification_results:
logger.warning("No structured evidence analysis found, using fallback method")
# Log detailed information about the failure
logger.warning(f"Expected format not found in response. Response excerpt: {result_text[:200]}...")
# Simple fallback parsing based on keywords
for idx, ev in enumerate(evidence):
# Check for keywords in the LLM response
ev_mention = f"EVIDENCE {idx+1}"
if ev_mention in result_text:
# Find the section for this evidence
parts = result_text.split(ev_mention)
if len(parts) > 1:
analysis_text = parts[1].split("EVIDENCE")[0] if "EVIDENCE" in parts[1] else parts[1]
# Determine classification
label = "insufficient" # Default
confidence = 0.0 # Default - zero confidence for fallback parsing
# Check for support indicators
if "support" in analysis_text.lower() or "confirms" in analysis_text.lower():
label = "support"
confidence = 0.4 # Lower confidence for fallback support
# Check for contradict indicators
elif "contradict" in analysis_text.lower() or "false" in analysis_text.lower():
label = "contradict"
confidence = 0.4 # Lower confidence for fallback contradict
# Check for valid source to adjust confidence
source_valid = False
if "URL:" in ev and ("http://" in ev or "https://" in ev):
source_valid = True
elif "Source:" in ev:
source_valid = True
if not source_valid:
confidence = min(confidence, 0.3)
# Create basic result
classification_results.append({
"label": label,
"confidence": confidence,
"evidence": ev,
"reason": f"Determined via fallback parsing. {'Valid source found.' if source_valid else 'Warning: No clear source identified.'}"
})
logger.debug(f"Fallback parsing for evidence {idx+1}: {label} with confidence {confidence}")
logger.info(f"Classified {len(classification_results)} evidence items")
return classification_results
except Exception as e:
logger.error(f"Error in evidence classification: {str(e)}")
# Provide a basic fallback
fallback_results = []
for ev in evidence:
fallback_results.append({
"label": "insufficient",
"confidence": 0.5,
"evidence": ev,
"reason": "Classification failed with error, using fallback"
})
return fallback_results
def normalize_tense(claim):
"""
Normalize verb tenses in claims to ensure consistent classification.
This function standardizes verb forms by converting present simple tense
verbs (e.g., "unveils") and perfect forms (e.g., "has unveiled") to their
past tense equivalents (e.g., "unveiled"). This ensures that semantically
equivalent claims are processed consistently regardless of verb tense
variations.
Args:
claim (str): The original claim text to normalize
Returns:
str: The normalized claim with consistent tense handling
Note:
This function specifically targets present simple and perfect forms,
preserving the semantic differences of continuous forms (is unveiling)
and future tense (will unveil).
"""
# Define patterns to normalize common verb forms.
# Each tuple contains (regex_pattern, replacement_text)
tense_patterns = [
# Present simple to past tense conversions
(r'\bunveils\b', r'unveiled'),
(r'\blaunches\b', r'launched'),
(r'\breleases\b', r'released'),
(r'\bannounces\b', r'announced'),
(r'\binvites\b', r'invited'),
(r'\bretaliates\b', r'retaliated'),
(r'\bends\b', r'ended'),
(r'\bbegins\b', r'began'),
(r'\bstarts\b', r'started'),
(r'\bcompletes\b', r'completed'),
(r'\bfinishes\b', r'finished'),
(r'\bintroduces\b', r'introduced'),
(r'\bcreates\b', r'created'),
(r'\bdevelops\b', r'developed'),
(r'\bpublishes\b', r'published'),
(r'\bacquires\b', r'acquired'),
(r'\bbuys\b', r'bought'),
(r'\bsells\b', r'sold'),
# Perfect forms (has/have/had + past participle) to simple past
(r'\b(has|have|had)\s+unveiled\b', r'unveiled'),
(r'\b(has|have|had)\s+launched\b', r'launched'),
(r'\b(has|have|had)\s+released\b', r'released'),
(r'\b(has|have|had)\s+announced\b', r'announced'),
(r'\b(has|have|had)\s+invited\b', r'invited'),
(r'\b(has|have|had)\s+retaliated\b', r'retaliated'),
(r'\b(has|have|had)\s+ended\b', r'ended'),
(r'\b(has|have|had)\s+begun\b', r'began'),
(r'\b(has|have|had)\s+started\b', r'started'),
(r'\b(has|have|had)\s+introduced\b', r'introduced'),
(r'\b(has|have|had)\s+created\b', r'created'),
(r'\b(has|have|had)\s+developed\b', r'developed'),
(r'\b(has|have|had)\s+published\b', r'published'),
(r'\b(has|have|had)\s+acquired\b', r'acquired'),
(r'\b(has|have|had)\s+bought\b', r'bought'),
(r'\b(has|have|had)\s+sold\b', r'sold')
]
# Apply normalization patterns
normalized = claim
for pattern, replacement in tense_patterns:
normalized = re.sub(pattern, replacement, normalized, flags=re.IGNORECASE)
# Log if normalization occurred for debugging purposes
if normalized != claim:
logger.info(f"Normalized claim from: '{claim}' to: '{normalized}'")
return normalized
def aggregate_evidence(classification_results):
"""
Aggregate evidence classifications to determine overall verdict
using a weighted scoring system of evidence count and quality.
Args:
classification_results (list): List of evidence classification results
Returns:
tuple: (verdict, confidence) - The final verdict and confidence score
"""
logger.info(f"Aggregating evidence from {len(classification_results) if classification_results else 0} results")
if not classification_results:
logger.warning("No classification results to aggregate")
return "Uncertain", 0.0 # Default with zero confidence
# Only consider support and contradict evidence items
support_items = [item for item in classification_results if item.get("label") == "support"]
contradict_items = [item for item in classification_results if item.get("label") == "contradict"]
# Count number of support and contradict items
support_count = len(support_items)
contradict_count = len(contradict_items)
# Calculate confidence scores for support and contradict items
support_confidence_sum = sum(item.get("confidence", 0) for item in support_items)
contradict_confidence_sum = sum(item.get("confidence", 0) for item in contradict_items)
# Apply weights: 55% for count, 45% for quality (confidence)
# Normalize counts to avoid division by zero
max_count = max(1, max(support_count, contradict_count))
# Calculate weighted scores
count_support_score = (support_count / max_count) * 0.55
count_contradict_score = (contradict_count / max_count) * 0.55
# Normalize confidence scores to avoid division by zero
max_confidence_sum = max(1, max(support_confidence_sum, contradict_confidence_sum))
quality_support_score = (support_confidence_sum / max_confidence_sum) * 0.45
quality_contradict_score = (contradict_confidence_sum / max_confidence_sum) * 0.45
# Total scores
total_support = count_support_score + quality_support_score
total_contradict = count_contradict_score + quality_contradict_score
# Check if all evidence is irrelevant/insufficient
if support_count == 0 and contradict_count == 0:
logger.info("All evidence items are irrelevant/insufficient")
return "Uncertain", 0.0
# Determine verdict based on higher total score
if total_support > total_contradict:
verdict = "True (Based on Evidence)"
min_score = total_contradict
max_score = total_support
else:
verdict = "False (Based on Evidence)"
min_score = total_support
max_score = total_contradict
# Calculate final confidence using the formula:
# (1 - min_score/max_score) * 100%
if max_score > 0:
final_confidence = 1.0 - (min_score / max_score)
else:
final_confidence = 0.0
# Handle cases where confidence is very low
if final_confidence == 0.0:
return "Uncertain", 0.0
elif final_confidence < 0.1: # Less than 10%
# Keep the verdict but with very low confidence
logger.info(f"Very low confidence verdict: {verdict} with {final_confidence:.2f} confidence")
logger.info(f"Final verdict: {verdict}, confidence: {final_confidence:.2f}")
return verdict, final_confidence
def extract_claim_keywords(claim):
"""
Extract important keywords from claim using NLP processing
Args:
claim (str): The claim text
Returns:
dict: Dictionary containing keywords and other claim components
"""
try:
# Get NLP model
nlp = get_nlp_model()
# Process claim with NLP
doc = nlp(claim)
# Extract entities
entities = [ent.text for ent in doc.ents]
# Extract important keywords (non-stopword nouns, adjectives, and verbs longer than 3 chars)
keywords = []
for token in doc:
# Keep all important parts of speech, longer than 3 characters
if token.pos_ in ["NOUN", "PROPN", "ADJ", "VERB"] and not token.is_stop and len(token.text) > 3:
keywords.append(token.text.lower())
# Also include some important modifiers and quantifiers
elif token.pos_ in ["NUM", "ADV"] and not token.is_stop and len(token.text) > 1:
keywords.append(token.text.lower())
# Extract verbs separately
verbs = [token.lemma_.lower() for token in doc if token.pos_ == "VERB" and not token.is_stop]
# Also extract multi-word phrases that might be important
noun_phrases = []
for chunk in doc.noun_chunks:
if len(chunk.text) > 3 and not all(token.is_stop for token in chunk):
noun_phrases.append(chunk.text.lower())
# Add phrases to keywords if not already included
for phrase in noun_phrases:
if phrase not in keywords and phrase.lower() not in [k.lower() for k in keywords]:
keywords.append(phrase.lower())
# Return all components
return {
"entities": entities,
"keywords": keywords,
"verbs": verbs,
"noun_phrases": noun_phrases
}
except Exception as e:
logger.error(f"Error extracting claim keywords: {e}")
# Return basic fallback using simple word extraction
words = [word.lower() for word in claim.split() if len(word) > 3]
return {"keywords": words, "entities": [], "verbs": [], "noun_phrases": []} |