File size: 41,423 Bytes
6d11371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
import logging
import re
from typing import Tuple, List, Dict, Optional
import os
import time

# Set up logging
logger = logging.getLogger("misinformation_detector")

# Define categories and their keywords
CLAIM_CATEGORIES = {
    "ai": [
        # General AI terms
        "AI", "artificial intelligence", "machine learning", "ML", "deep learning", "DL", 
        "neural network", "neural nets", "generative AI", "GenAI", "AGI", "artificial general intelligence",
        "transformer", "attention mechanism", "fine-tuning", "pre-training", "training", "inference",
        
        # AI Models and Architectures
        "language model", "large language model", "LLM", "foundation model", "multimodal model",
        "vision language model", "VLM", "text-to-speech", "TTS", "speech-to-text", "STT",
        "text-to-image", "image-to-text", "diffusion model", "generative model", "discriminative model",
        "GPT", "BERT", "T5", "PaLM", "Claude", "Llama", "Gemini", "Mistral", "Mixtral", "Stable Diffusion",
        "Dall-E", "Midjourney", "Sora", "transformer", "MoE", "mixture of experts", "sparse model", 
        "dense model", "encoder", "decoder", "encoder-decoder", "autoencoder", "VAE",
        "mixture of experts", "MoE", "sparse MoE", "switch transformer", "gated experts",
        "routing network", "expert routing", "pathways", "multi-query attention", "multi-head attention",
        "rotary position embedding", "RoPE", "grouped-query attention", "GQA", "flash attention",
        "state space model", "SSM", "mamba", "recurrent neural network", "RNN", "LSTM", "GRU",
        "convolutional neural network", "CNN", "residual connection", "skip connection", "normalization",
        "layer norm", "group norm", "batch norm", "parameter efficient fine-tuning", "PEFT",
        "LoRA", "low-rank adaptation", "QLoRA", "adapters", "prompt tuning", "prefix tuning",
        
        # AI Learning Paradigms
        "supervised learning", "unsupervised learning", "reinforcement learning", "RL", 
        "meta-learning", "transfer learning", "federated learning", "self-supervised learning", 
        "semi-supervised learning", "few-shot learning", "zero-shot learning", "one-shot learning",
        "contrastive learning", "curriculum learning", "imitation learning", "active learning",
        "reinforcement learning from human feedback", "RLHF", "direct preference optimization", "DPO",
        "constitutional AI", "red teaming", "adversarial training", "GAN", "generative adversarial network",
        "diffusion", "latent diffusion", "flow-based model", "variational autoencoder", "VAE",
        
        # AI Capabilities and Applications
        "natural language processing", "NLP", "computer vision", "CV", "speech recognition",
        "text generation", "image generation", "video generation", "multimodal", "multi-modal",
        "recommendation system", "recommender system", "chatbot", "conversational AI",
        "sentiment analysis", "entity recognition", "semantic search", "vector search", "embedding",
        "classification", "regression", "clustering", "anomaly detection", "agent", "AI agent",
        "autonomous agent", "agentic", "RAG", "retrieval augmented generation", "tool use",
        "function calling", "reasoning", "chain-of-thought", "CoT", "tree-of-thought", "ToT",
        "planning", "decision making", "multi-agent", "agent swarm", "multi-agent simulation",
        
        # AI Technical Terms
        "token", "tokenizer", "tokenization", "embedding", "vector", "prompt", "prompt engineering",
        "context window", "parameter", "weights", "bias", "activation function", "loss function",
        "gradient descent", "backpropagation", "epoch", "batch", "mini-batch", "regularization",
        "dropout", "overfitting", "underfitting", "hyperparameter", "latent space", "latent variable",
        "feature extraction", "dimensionality reduction", "quantization", "pruning",
        "fine-tuning", "transfer learning", "knowledge distillation", "int4", "int8", "bfloat16",
        "float16", "mixed precision", "GPTQ", "AWQ", "GGUF", "GGML", "KV cache", "speculative decoding",
        "beam search", "greedy decoding", "temperature", "top-k", "top-p", "nucleus sampling",
        
        # AI Tools and Frameworks
        "TensorFlow", "PyTorch", "JAX", "Keras", "Hugging Face", "Transformers", "Diffusers",
        "LangChain", "Llama Index", "OpenAI", "Anthropic", "NVIDIA", "GPU", "TPU", "IPU", "NPU", "CUDA",
        "MLOps", "model monitoring", "model deployment", "model serving", "inference endpoint",
        "vLLM", "TGI", "text generation inference", "triton", "onnx", "tensorRT",
        
        # AI Ethics and Concerns
        "AI ethics", "responsible AI", "AI safety", "AI alignment", "AI governance",
        "bias", "fairness", "interpretability", "explainability", "XAI", "transparency",
        "hallucination", "toxicity", "safe deployment", "AI risk", "AI capabilities",
        "alignment tax", "red teaming", "jailbreak", "prompt injection", "data poisoning",
        
        # AI Companies and Organizations
        "OpenAI", "Anthropic", "Google DeepMind", "Meta AI", "Microsoft", "NVIDIA", 
        "Hugging Face", "Mistral AI", "Cohere", "AI21 Labs", "Stability AI", "Midjourney",
        "EleutherAI", "Allen AI", "DeepMind", "Character AI", "Inflection AI", "xAI"
    ],
    
    "science": [
        # General scientific terms
        "study", "research", "scientist", "scientific", "discovered", "experiment", 
        "laboratory", "clinical", "trial", "hypothesis", "theory", "evidence-based",
        "peer-reviewed", "journal", "publication", "finding", "breakthrough", "innovation",
        "discovery", "analysis", "measurement", "observation", "empirical",
        
        # Biology and medicine
        "biology", "chemistry", "physics", "genetics", "genomics", "DNA", "RNA", 
        "medicine", "gene", "protein", "molecule", "cell", "brain", "neuro", 
        "cancer", "disease", "cure", "treatment", "vaccine", "health", "medical",
        "pharmaceutical", "drug", "therapy", "symptom", "diagnosis", "prognosis",
        "patient", "doctor", "hospital", "clinic", "surgery", "immune", "antibody",
        "virus", "bacteria", "pathogen", "infection", "epidemic", "pandemic",
        "organism", "evolution", "mutation", "chromosome", "enzyme", "hormone",
        
        # Physics and astronomy
        "quantum", "particle", "atom", "nuclear", "electron", "neutron", "proton",
        "atomic", "subatomic", "molecular", "energy", "matter", "mass", "force",
        "space", "NASA", "telescope", "planet", "exoplanet", "moon", "lunar", "mars",
        "star", "galaxy", "cosmic", "astronomical", "universe", "solar", "celestial",
        "orbit", "gravitational", "gravity", "relativity", "quantum mechanics",
        "string theory", "dark matter", "dark energy", "black hole", "supernova",
        "radiation", "radioactive", "isotope", "fission", "fusion", "accelerator",
        
        # Environmental science
        "climate", "carbon", "environment", "ecosystem", "species", "extinct",
        "endangered", "biodiversity", "conservation", "sustainable", "renewable",
        "fossil fuel", "greenhouse", "global warming", "polar", "ice cap", "glacier",
        "ozone", "atmosphere", "weather", "meteorology", "geology", "earthquake",
        "volcanic", "ocean", "marine", "coral reef", "deforestation", "pollution",
        
        # Math and computer science (non-AI specific)
        "equation", "formula", "theorem", "calculus", "statistical", "probability",
        "variable", "matrix", "optimization",
        
        # Organizations
        "CERN", "NIH", "CDC", "WHO", "NOAA", "ESA", "SpaceX", "Blue Origin", "JPL",
        "laboratory", "institute", "university", "academic", "faculty", "professor",
        
        # Science tools
        "Matlab", "SPSS", "SAS", "ImageJ", "LabVIEW", "ANSYS", "Cadence", "Origin",
        "Avogadro", "ChemDraw", "Mathematica", "Wolfram Alpha", "COMSOL", "LAMMPS",
        "VASP", "Gaussian", "GIS", "ArcGIS", "QGIS", "Maple", "R Studio"
    ],
    
    "technology": [
        # General tech terms
        "computer", "hardware", "internet", "cyber", "digital", "tech", 
        "robot", "automation", "autonomous", "code", "programming", "data", "cloud", 
        "server", "network", "encryption", "blockchain", "crypto", "bitcoin", "ethereum",
        "technology", "breakthrough", "prototype", "dataset",
        "engineering", "technical", "specification", "feature", "functionality",
        "interface", "system", "infrastructure", "integration", "implementation",
        
        # Devices and hardware
        "smartphone", "device", "gadget", "laptop", "desktop", "tablet", "wearable",
        "smartwatch", "IoT", "internet of things", "sensor", "chip", "semiconductor",
        "processor", "CPU", "GPU", "memory", "RAM", "storage", "hard drive", "SSD",
        "electronic", "circuit", "motherboard", "component", "peripheral", "accessory",
        "display", "screen", "touchscreen", "camera", "lens", "microphone", "speaker",
        "battery", "charger", "wireless", "bluetooth", "WiFi", "router", "modem",
        
        # Software and internet
        "algorithm", "app", "application", "platform", "website", "online", "web", "browser",
        "operating system", "Windows", "macOS", "Linux", "Android", "iOS", "software",
        "program", "code", "coding", "development", "framework", "library", "API",
        "backend", "frontend", "full-stack", "developer", "programmer", "function",
        "database", "SQL", "NoSQL", "cloud computing", "SaaS", "PaaS", "IaaS",
        "DevOps", "agile", "scrum", "sprint", "version control", "git", "repository",
        
        # Communications and networking
        "5G", "6G", "broadband", "fiber", "network", "wireless", "cellular", "mobile",
        "telecommunications", "telecom", "transmission", "bandwidth", "latency",
        "protocol", "IP address", "DNS", "server", "hosting", "data center",
        
        # Company and product names
        "Apple", "Google", "Microsoft", "Amazon", "Facebook", "Meta", "Tesla", 
        "IBM", "Intel", "AMD", "Nvidia", "Qualcomm", "Cisco", "Oracle", "SAP", 
        "Huawei", "Samsung", "Sony", "LG", "Dell", "HP", "Lenovo", "Xiaomi",
        "iPhone", "iPad", "MacBook", "Surface", "Galaxy", "Pixel", "Windows",
        "Android", "iOS", "Chrome", "Firefox", "Edge", "Safari", "Office",
        "Azure", "AWS", "Google Cloud", "Gmail", "Outlook", "Teams", "Zoom",
        
        # Advanced technologies
        "VR", "AR", "XR", "virtual reality", "augmented reality", "mixed reality",
        "metaverse", "3D printing", "additive manufacturing", "quantum computing",
        "nanotechnology", "biotechnology", "electric vehicle", "self-driving",
        "autonomous vehicle", "drone", "UAV", "robotics", "cybersecurity",
        
        # Social media
        "social media", "social network", "Facebook", "Instagram", "Twitter", "X",
        "LinkedIn", "TikTok", "Snapchat", "YouTube", "Pinterest", "Reddit",
        "streaming", "content creator", "influencer", "follower", "like", "share",
        "post", "tweet", "user-generated", "viral", "trending", "engagement",
        
        # Technology tools
        "NumPy", "Pandas", "Matplotlib", "Seaborn", "Scikit-learn", "Jupyter",
        "Visual Studio", "VS Code", "IntelliJ", "PyCharm", "Eclipse", "Android Studio",
        "Xcode", "Docker", "Kubernetes", "Jenkins", "Ansible", "Terraform", "Vagrant",
        "AWS CLI", "Azure CLI", "GCP CLI", "PowerShell", "Bash", "npm", "pip", "conda",
        "React", "Angular", "Vue.js", "Node.js", "Django", "Flask", "Spring", "Laravel",
        "PostgreSQL", "MySQL", "MongoDB", "Redis", "Elasticsearch", "Kafka", "RabbitMQ",
        
        # Optimization terms
        "efficiency", "performance tuning", "benchmarking", "profiling",
        "refactoring", "scaling", "bottleneck", "throughput", "latency reduction",
        "response time", "caching", "load balancing", "distributed computing",
        "parallel processing", "concurrency", "asynchronous", "memory management"
    ],
    
    "politics": [
        # Government structure
        "president", "prime minister", "government", "parliament", "congress", 
        "senate", "house", "representative", "minister", "secretary", "cabinet",
        "administration", "mayor", "governor", "politician", "official", "authority",
        "federal", "state", "local", "municipal", "county", "city", "town",
        "constituency", "district", "precinct", "ward", "judiciary", "executive",
        "legislative", "branch", "checks and balances", "separation of powers",
        
        # Political activities
        "election", "campaign", "vote", "voter", "ballot", "polling",
        "political", "politics", "debate", "speech", "address", "press conference",
        "approval rating", "opinion poll", "candidate", "incumbent", "challenger",
        "primary", "caucus", "convention", "delegate", "nomination", "campaign trail",
        "fundraising", "lobbying", "advocacy", "activism", "protest", "demonstration",
        
        # Political ideologies
        "democracy", "democratic", "republican", "conservative", "liberal", 
        "progressive", "left-wing", "right-wing", "centrist", "moderate",
        "socialist", "capitalist", "communist", "libertarian", "populist",
        "nationalist", "globalist", "isolationist", "hawk", "dove",
        "ideology", "partisan", "bipartisan", "coalition", "majority", "minority",
        
        # Laws and regulations
        "bill", "law", "legislation", "regulation", "policy", "statute", "code",
        "amendment", "reform", "repeal", "enact", "implement", "enforce",
        "constitutional", "unconstitutional", "legal", "illegal", "legalize",
        "criminalize", "deregulate", "regulatory", "compliance", "mandate",
        
        # Judicial and legal
        "court", "supreme", "justice", "judge", "ruling", "decision", "opinion",
        "case", "lawsuit", "litigation", "plaintiff", "defendant", "prosecutor",
        "attorney", "lawyer", "advocate", "judicial review", "precedent",
        "constitution", "amendment", "rights", "civil rights", "human rights",
        
        # International relations
        "treaty", "diplomatic", "diplomacy", "relations",
        "foreign policy", "domestic policy", "UN", "NATO", "EU", "United Nations",
        "sanctions", "embargo", "tariff", "trade war", "diplomat", "embassy",
        "consulate", "ambassador", "delegation", "summit", "bilateral", "multilateral",
        "alliance", "ally", "adversary", "geopolitical", "sovereignty", "regime",
        
        # Security and defense
        "national security", "homeland security", "defense", "military", "armed forces",
        "army", "navy", "air force", "marines", "coast guard", "intelligence",
        "CIA", "FBI", "NSA", "Pentagon", "war", "conflict", "peacekeeping",
        "terrorism", "counterterrorism", "insurgency", "nuclear weapon", "missile",
        "disarmament", "nonproliferation", "surveillance", "espionage",
        
        # Political institutions
        "White House", "Kremlin", "Downing Street", "Capitol Hill", "Westminster",
        "United Nations", "European Union", "NATO", "World Bank", "IMF", "WTO",
        "ASEAN", "African Union", "BRICS", "G7", "G20",
        
        # Political parties and movements
        "Democrat", "Republican", "Labour", "Conservative", "Green Party",
        "Socialist", "Communist", "Libertarian", "Independent", "Tea Party",
        "progressive movement", "civil rights movement", "womens rights",
        "LGBTQ rights", "Black Lives Matter", "environmental movement"
    ],
    
    "business": [
        # Companies and organization types
        "company", "corporation", "business", "startup", "firm", "enterprise", 
        "corporate", "industry", "sector", "conglomerate", "multinational",
        "organization", "entity", "private", "public", "incorporated", "LLC",
        "partnership", "proprietorship", "franchise", "subsidiary", "parent company",
        "headquarters", "office", "facility", "plant", "factory", "warehouse",
        "retail", "wholesale", "ecommerce", "brick-and-mortar", "chain", "outlet",
        
        # Business roles and management
        "executive", "CEO", "CFO", "CTO", "COO", "CMO", "CIO", "CHRO", "chief",
        "director", "board", "chairman", "chairwoman", "chairperson", "president",
        "vice president", "senior", "junior", "manager", "management", "supervisor",
        "founder", "entrepreneur", "owner", "shareholder", "stakeholder",
        "employee", "staff", "workforce", "personnel", "human resources", "HR",
        "recruit", "hire", "layoff", "downsizing", "restructuring", "reorganization",
        "leadership",
        
        # Financial terms
        "profit", "revenue", "sales", "income", "earnings", "EBITDA", "turnover", 
        "loss", "deficit", "expense", "cost", "overhead", "margin", "markup",
        "budget", "forecast", "projection", "estimate", "actual", "variance",
        "balance sheet", "income statement", "cash flow", "P&L", "liquidity",
        "solvency", "asset", "liability", "equity", "debt", "leverage", "capital",
        "working capital", "cash", "funds", "money", "payment", "transaction",
        
        # Markets and trading
        "market", "stock", "share", "bond", "security", "commodity", "futures",
        "option", "derivative", "forex", "foreign exchange", "currency", "crypto",
        "trader", "trading", "buy", "sell", "long", "short", "position", "portfolio",
        "diversification", "hedge", "risk", "return", "yield", "dividend", "interest",
        "bull market", "bear market", "correction", "crash", "rally", "volatile",
        "volatility", "index", "benchmark", "Dow Jones", "NASDAQ", "S&P 500", "NYSE",
        
        # Investment and funding
        "investor", "investment", "fund", "mutual fund", "ETF", "hedge fund", 
        "private equity", "venture", "venture capital", "VC", "angel investor",
        "seed", "Series A", "Series B", "Series C", "funding", "financing",
        "loan", "credit", "debt", "equity", "fundraising", "crowdfunding",
        "IPO", "initial public offering", "going public", "listed", "delisted",
        "merger", "acquisition", "M&A", "takeover", "buyout", "divestiture",
        "valuation", "billion", "million", "trillion", "unicorn", "decacorn",
        
        # Economic terms
        "economy", "economic", "economics", "macro", "micro", "fiscal", "monetary",
        "supply", "demand", "market forces", "competition", "competitive", "monopoly",
        "oligopoly", "antitrust", "deregulation", "growth", "decline",
        "recession", "depression", "recovery", "expansion", "contraction", "cycle",
        "inflation", "deflation", "stagflation", "hyperinflation", "CPI", "price",
        "GDP", "gross domestic product", "GNP", "productivity", "output", "input",
        
        # Banking and finance
        "finance", "financial", "bank", "banking", "commercial bank", "investment bank",
        "central bank", "Federal Reserve", "Fed", "ECB", "Bank of England", "BOJ",
        "interest rate", "prime rate", "discount rate", "basis point", "monetary policy",
        "quantitative easing", "tightening", "loosening", "credit", "lending",
        "borrowing", "loan", "mortgage", "consumer credit", "credit card", "debit card",
        "checking", "savings", "deposit", "withdrawal", "ATM", "branch", "online banking",
        
        # Currencies and payments
        "dollar", "euro", "pound", "yen", "yuan", "rupee", "ruble", "real", "peso",
        "currency", "money", "fiat", "exchange rate", "remittance", "transfer",
        "payment", "transaction", "wire", "ACH", "SWIFT", "clearing", "settlement",
        "cryptocurrency", "bitcoin", "ethereum", "blockchain", "fintech", "paytech",
        
        # Business operations
        "product", "service", "solution", "offering", "launch", "rollout", "release",
        "operation", "production", "manufacturing", "supply chain", "logistics",
        "procurement", "inventory", "distribution", "shipping", "delivery",
        "quality", "control", "assurance", "standard", "certification",

        # Marketing and sales
        "marketing", "advertise", "advertising", "campaign", "promotion", "publicity",
        "PR", "public relations", "brand", "branding", "identity", "image", "reputation",
        "sales", "selling", "deal", "transaction", "pipeline", "lead", "prospect",
        "customer", "client", "consumer", "buyer", "purchaser", "target market",
        "segment", "demographic", "psychographic", "B2B", "B2C", "retail", "wholesale",
        "price", "pricing", "discount", "premium", "luxury", "value", "bargain"
    ],
    
    "world": [
        # General international terms
        "country", "nation", "state", "republic", "kingdom", "global", "international", 
        "foreign", "world", "worldwide", "domestic", "abroad", "overseas",
        "developed", "developing", "industrialized", "emerging", "third world",
        "global south", "global north", "east", "west", "western", "eastern",
        "bilateral", "multilateral", "transnational", "multinational", "sovereignty",
        
        # Regions and continents
        "Europe", "European", "Asia", "Asian", "Africa", "African", "North America",
        "South America", "Latin America", "Australia", "Oceania", "Antarctica",
        "Middle East", "Central Asia", "Southeast Asia", "East Asia", "South Asia",
        "Eastern Europe", "Western Europe", "Northern Europe", "Southern Europe",
        "Mediterranean", "Scandinavia", "Nordic", "Baltic", "Balkans", "Caucasus",
        "Caribbean", "Central America", "South Pacific", "Polynesia", "Micronesia",
        
        # Major countries and regions
        "China", "Chinese", "Russia", "Russian", "India", "Indian", "Japan", "Japanese", 
        "UK", "British", "England", "English", "Scotland", "Scottish", "Wales", "Welsh",
        "Germany", "German", "France", "French", "Italy", "Italian", "Spain", "Spanish",
        "Canada", "Canadian", "Brazil", "Brazilian", "Mexico", "Mexican", "Turkey", "Turkish",
        "United States", "US", "USA", "American", "Britain", "Korea", "Korean",
        "North Korea", "South Korea", "Saudi", "Saudi Arabia", "Saudi Arabian",
        "Iran", "Iranian", "Iraq", "Iraqi", "Israel", "Israeli", "Palestine", "Palestinian",
        "Egypt", "Egyptian", "Pakistan", "Pakistani", "Indonesia", "Indonesian",
        "Australia", "Australian", "New Zealand", "Nigeria", "Nigerian", "South Africa",
        "Argentina", "Argentinian", "Colombia", "Colombian", "Venezuela", "Venezuelan",
        "Ukraine", "Ukrainian", "Poland", "Polish", "Switzerland", "Swiss",
        "Netherlands", "Dutch", "Belgium", "Belgian", "Sweden", "Swedish", "Norway", "Norwegian",
        
        # International issues and topics
        "war", "conflict", "crisis", "tension", "dispute", "hostility", "peace",
        "peacekeeping", "ceasefire", "truce", "armistice", "treaty", "agreement",
        "compromise", "negotiation", "mediation", "resolution", "settlement",
        "refugee", "migrant", "asylum seeker", "displacement", "humanitarian",
        "border", "frontier", "territory", "territorial", "sovereignty", "jurisdiction",
        "terror", "terrorism", "extremism", "radicalism", "insurgency", "militant",
        "sanction", "embargo", "restriction", "isolation", "blockade",
        
        # International trade and economy
        "trade", "import", "export", "tariff", "duty", "quota", "subsidy",
        "protectionism", "free trade", "fair trade", "globalization", "trade war",
        "trade agreement", "trade deal", "trade deficit", "trade surplus",
        "supply chain", "outsourcing", "offshoring", "reshoring", "nearshoring",
        
        # Diplomacy and international relations
        "embassy", "consulate", "diplomatic", "diplomacy", "diplomat", "ambassador",
        "consul", "attaché", "envoy", "emissary", "delegation", "mission",
        "foreign policy", "international relations", "geopolitics", "geopolitical",
        "influence", "power", "superpower", "hegemony", "alliance", "coalition",
        "bloc", "axis", "sphere of influence", "buffer state", "proxy",
        
        # International organizations
        "UN", "United Nations", "EU", "European Union", "NATO", "NAFTA", "USMCA",
        "ASEAN", "OPEC", "Commonwealth", "Arab League", "African Union", "AU",
        "BRICS", "G7", "G20", "IMF", "World Bank", "WTO", "WHO", "UNESCO",
        "Security Council", "General Assembly", "International Court of Justice",
        
        # Travel and cultural exchange
        "visa", "passport", "immigration", "emigration", "migration", "travel",
        "tourism", "tourist", "visitor", "foreigner", "expatriate", "expat",
        "citizenship", "nationality", "dual citizen", "naturalization",
        "cultural", "tradition", "heritage", "indigenous", "native", "local",
        "language", "dialect", "translation", "interpreter", "cross-cultural",

        # Other
        "event"
    ],
    
    "sports": [
        # General sports terms
        "game", "match", "tournament", "championship", "league", "cup", "Olympics", 
        "olympic", "world cup", "competition", "contest",
        "sport", "sporting", "athletics", "physical", "play", "compete", "competition",
        "amateur", "professional", "pro", "preseason", "regular season",
        "postseason", "playoff", "final", "semifinal", "quarterfinal", "qualifying",
        
        # Team sports
        "football", "soccer", "American football", "rugby", "basketball", "baseball", 
        "cricket", "hockey", "ice hockey", "field hockey", "volleyball", "handball",
        "water polo", "lacrosse", "ultimate frisbee", "netball", "kabaddi",
        "team", "club", "franchise", "squad", "roster", "lineup", "formation",
        "player", "coach", "manager", "trainer", "captain", "starter", "substitute",
        "bench", "draft", "trade", "free agent", "contract", "transfer", "loan",
        
        # Individual sports
        "tennis", "golf", "boxing", "wrestling", "martial arts", "MMA", "UFC",
        "athletics", "track and field", "swimming", "diving", "gymnastics",
        "skiing", "snowboarding", "skating", "figure skating", "speed skating",
        "cycling", "mountain biking", "BMX", "motorsport", "F1", "Formula 1",
        "NASCAR", "IndyCar", "MotoGP", "rally", "marathon", "triathlon", "decathlon",
        "archery", "shooting", "fencing", "equestrian", "rowing", "canoeing", "kayaking",
        "surfing", "skateboarding", "climbing", "bouldering", "weightlifting",
        
        # Scoring and results
        "score", "point", "goal", "touchdown", "basket", "run", "wicket", "try",
        "win", "lose", "draw", "tie", "defeat", "victory", "champion", "winner",
        "loser", "runner-up", "finalist", "semifinalist", "eliminated", "advance",
        "qualify", "record", "personal best", "world record", "Olympic record",
        "streak", "undefeated", "unbeaten", "perfect season", "comeback",
        
        # Performance and training
        "fitness", "training", "practice", "drill", "workout", "exercise", "regime",
        "conditioning", "strength", "endurance", "speed", "agility", "flexibility",
        "skill", "technique", "form", "style", "strategy", "tactic", "playbook",
        "offense", "defense", "attack", "counter", "press", "formation",
        "injury", "rehabilitation", "recovery", "physiotherapy", "sports medicine",
        
        # Sports infrastructure
        "stadium", "arena", "court", "field", "pitch", "rink", "pool", "track",
        "course", "gymnasium", "gym", "complex", "venue", "facility", "locker room",
        "dugout", "bench", "sideline", "grandstand", "spectator", "fan", "supporter",
        
        # Sports organizations and competitions
        "medal", "gold", "silver", "bronze", "podium", "Olympics", "Paralympic",
        "commonwealth games", "Asian games", "Pan American games", "world championship",
        "grand slam", "masters", "open", "invitational", "classic", "tour", "circuit",
        "IPL", "Indian Premier League", "MLB", "Major League Baseball", 
        "NBA", "National Basketball Association", "NFL", "National Football League", 
        "NHL", "National Hockey League", "FIFA", "UEFA", "ATP", "WTA", "ICC",
        "Premier League", "La Liga", "Bundesliga", "Serie A", "Ligue 1", "MLS",
        "Champions League", "Europa League", "Super Bowl", "World Series", "Stanley Cup",
        "NCAA", "collegiate", "college", "university", "varsity", "intramural",
        
        # Sports media and business
        "broadcast", "coverage", "commentator", "announcer", "pundit", "analyst",
        "highlight", "replay", "sports network", "ESPN", "Sky Sports", "Fox Sports",
        "sponsorship", "endorsement", "advertisement", "merchandise", "jersey", "kit",
        "ticket", "season ticket", "box seat", "premium", "concession", "vendor",
        # Sports media and business (continued)
        "broadcast", "coverage", "commentator", "announcer", "pundit", "analyst",
        "highlight", "replay", "sports network", "ESPN", "Sky Sports", "Fox Sports",
        "sponsorship", "endorsement", "advertisement", "merchandise", "jersey", "kit",
        "ticket", "season ticket", "box seat", "premium", "concession", "vendor"
    ],
    
    "entertainment": [
        # Film and cinema
        "movie", "film", "cinema", "feature", "short film", "documentary", "animation",
        "blockbuster", "indie", "independent film", "foreign film", "box office",
        "screening", "premiere", "release", "theatrical", "stream", "streaming",
        "director", "producer", "screenwriter", "script", "screenplay", "adaptation",
        "cinematography", "cinematographer", "editing", "editor", "visual effects",
        "special effects", "CGI", "motion capture", "sound design", "soundtrack",
        "score", "composer", "scene", "shot", "take", "cut", "sequel", "prequel",
        "trilogy", "franchise", "universe", "reboot", "remake", "spin-off",
        "genre", "action", "comedy", "drama", "thriller", "horror", "sci-fi",
        "science fiction", "fantasy", "romance", "romantic comedy", "rom-com",
        "mystery", "crime", "western", "historical", "biographical", "biopic",
        
        # Television
        "TV", "television", "show", "episode",
        "finale", "midseason", "sitcom", "drama series", "miniseries", "limited series",
        "anthology", "reality TV", "game show", "talk show", "variety show",
        "network", "cable", "premium cable", "broadcast", "channel", "program",
        "primetime", "daytime", "syndication", "rerun", "renewed", "cancelled",
        "showrunner", "creator", "writer", "TV writer", "episode writer", "staff writer",
        
        # Performing arts
        "actor", "actress", "performer", "cast", "casting", "star", "co-star",
        "supporting", "lead", "protagonist", "antagonist", "villain", "hero", "anti-hero",
        "character", "role", "portrayal", "acting", "dialogue",
        "monologue", "line", "script", "improv", "improvisation", "stand-up",
        "comedian", "comic", "sketch", "theater", "theatre", "stage", "Broadway",
        "West End", "play", "musical", "opera", "ballet", "dance", "choreography",
        "production", "rehearsal", "audition", "understudy", "troupe", "ensemble",
        
        # Music
        "music", "song", "track", "single", "album", "EP", "LP", "record",
        "release", "drop", "artist", "musician", "singer", "vocalist", "band",
        "group", "duo", "trio", "soloist", "frontman", "frontwoman", "lead singer",
        "songwriter", "composer", "producer", "DJ", "rapper", "MC", "beatmaker",
        "guitarist", "bassist", "drummer", "pianist", "keyboardist", "violinist",
        "instrumentalist", "orchestra", "symphony", "philharmonic", "conductor",
        "genre", "rock", "pop", "hip-hop", "rap", "R&B", "soul", "funk", "jazz",
        "blues", "country", "folk", "electronic", "EDM", "dance", "techno", "house",
        "metal", "punk", "alternative", "indie", "classical", "reggae", "latin",
        "hit", "chart", "Billboard", "Grammy", "award-winning", "platinum", "gold",
        "concert", "tour", "gig", "show", "venue", "arena",
        "stadium", "festival", "Coachella", "Glastonbury", "Lollapalooza", "Bonnaroo",
        
        # Celebrity culture
        "celebrity", "star", "fame", "famous", "A-list", "B-list", "icon", "iconic",
        "superstar", "public figure", "household name", "stardom", "limelight",
        "popular", "popularity", "fan", "fanbase", "followers", "stan", "groupie",
        "paparazzi", "tabloid", "gossip", "rumor", "scandal", "controversy",
        "interview", "press conference", "red carpet", "premiere", "gala", "award show",
        
        # Awards and recognition
        "award", "nominee", "nomination", "winner", "recipient", "honor", "accolade",
        "Oscar", "Academy Award", "Emmy", "Grammy", "Tony", "Golden Globe", "BAFTA",
        "MTV Award", "People's Choice", "Critics' Choice", "SAG Award", "Billboard Award",
        "best actor", "best actress", "best director", "best picture", "best film",
        "best album", "best song", "hall of fame", "lifetime achievement", "legacy",
        
        # Media and publishing
        "book", "novel", "fiction", "non-fiction", "memoir", "biography", "autobiography",
        "bestseller", "bestselling", "author", "writer", "novelist", "literary",
        "literature", "publisher", "publishing", "imprint", "edition", "volume",
        "chapter", "page", "paragraph", "prose", "narrative", "plot", "storyline",
        "character", "protagonist", "antagonist", "setting", "theme", "genre",
        "mystery", "thriller", "romance", "sci-fi", "fantasy", "young adult", "YA",
        "comic", "comic book", "graphic novel", "manga", "anime", "cartoon",
        
        # Digital entertainment
        "streaming", "stream", "subscription", "platform", "service", "content",
        "Netflix", "Disney+", "Amazon Prime", "Hulu", "HBO", "HBO Max", "Apple TV+",
        "Peacock", "Paramount+", "YouTube", "YouTube Premium", "TikTok", "Instagram",
        "influencer", "content creator", "vlogger", "blogger", "podcaster", "podcast",
        "episode", "download", "subscriber", "follower", "like", "share", "viral",
        "trending", "binge-watch", "marathon", "spoiler", "recap", "review", "trailer",
        "teaser", "behind the scenes", "BTS", "exclusive", "original"
    ]
}

# Add domain-specific RSS feeds for different categories
CATEGORY_SPECIFIC_FEEDS = {
    "ai": [
        "https://www.artificialintelligence-news.com/feed/",
        "https://www.deeplearningweekly.com/feed",
        "https://openai.com/news/rss.xml",
        "https://aiweekly.co/issues.rss",
        "https://news.mit.edu/topic/mitartificial-intelligence2-rss.xml",
        "https://ai.stanford.edu/blog/feed.xml",
        "https://feeds.feedburner.com/blogspot/gJZg",
        "https://blog.google/technology/ai/rss/",
        "https://deepmind.google/blog/rss.xml",
        "https://blog.tensorflow.org/feeds/posts/default",
        "https://aws.amazon.com/blogs/machine-learning/feed/",
        "https://machinelearning.apple.com/rss.xml",
        "https://msrc.microsoft.com/blog/feed",
        "https://learn.microsoft.com/en-us/archive/blogs/machinelearning/feed.xml",
        "https://rss.arxiv.org/rss/cs.LG"
    ],
    "science": [
        "https://www.science.org/rss/news_current.xml",
        "https://www.nature.com/nature.rss",
        "http://rss.sciam.com/basic-science",
        "http://rss.sciam.com/ScientificAmerican-Global",
        "https://www.newscientist.com/feed/home/?cmpid=RSS|NSNS-Home",
        "https://phys.org/rss-feed/"
    ],
    "technology": [
        "https://www.wired.com/feed/category/business/latest/rss",
        "https://techcrunch.com/feed/",
        "https://www.technologyreview.com/feed/",
        "https://arstechnica.com/feed/",
        "https://www.theverge.com/rss/index.xml",
        "https://news.ycombinator.com/rss"
    ],
    "politics": [
        "https://feeds.washingtonpost.com/rss/politics",
        "https://rss.nytimes.com/services/xml/rss/nyt/Politics.xml",
        "https://feeds.bbci.co.uk/news/politics/rss.xml",
        "https://www.politico.com/rss/politicopicks.xml",
        "https://www.realclearpolitics.com/index.xml"
    ],
    "business": [
        "https://www.ft.com/rss/home",
        "https://feeds.bloomberg.com/markets/news.rss",
        "https://rss.nytimes.com/services/xml/rss/nyt/Business.xml",
        "https://feeds.washingtonpost.com/rss/business",
        "https://www.entrepreneur.com/latest.rss",
        "https://search.cnbc.com/rs/search/combinedcms/view.xml?partnerId=wrss01&id=10001147",
        "https://feeds.content.dowjones.io/public/rss/WSJcomUSBusiness",
        "https://feeds.a.dj.com/rss/RSSMarketsMain.xml"
    ],
    "world": [
        "https://feeds.bbci.co.uk/news/world/rss.xml",
        "https://rss.nytimes.com/services/xml/rss/nyt/World.xml",
        "https://www.aljazeera.com/xml/rss/all.xml",
        "https://feeds.washingtonpost.com/rss/world",
        "http://rss.cnn.com/rss/cnn_world.rss"
    ],
    "sports": [
        "https://www.espn.com/espn/rss/news",
        "https://www.cbssports.com/rss/headlines/",
        "https://www.espncricinfo.com/rss/content/story/feeds/0.xml",
        "https://api.foxsports.com/v1/rss",
        "https://www.sportingnews.com/us/rss",
        "https://www.theguardian.com/sport/rss",
    ],
    "entertainment": [
        "https://www.hollywoodreporter.com/feed/",
        "https://variety.com/feed/",
        "https://www.eonline.com/syndication/feeds/rssfeeds/topstories.xml",
        "https://www.rollingstone.com/feed/",
        "https://rss.nytimes.com/services/xml/rss/nyt/Arts.xml"
    ],
    "fact_checking": [
        "https://www.snopes.com/feed/",
        "https://www.politifact.com/rss/all/",
        "https://www.factcheck.org/feed/",
        "https://leadstories.com/atom.xml",
        "https://fullfact.org/feed/all/",
        "https://www.truthorfiction.com/feed/"
    ]
}

def detect_claim_category(claim: str) -> Tuple[str, float]:
    """
    Detect the most likely category of a claim and its confidence score
    
    This function analyzes the claim text and matches it against category-specific keywords
    to determine the most likely category for the claim (AI, science, politics, etc.).
    
    Args:
        claim (str): The claim text
        
    Returns:
        tuple: (category_name, confidence_score)
    """
    if not claim:
        return "general", 0.3
    
    # Lowercase for better matching
    claim_lower = claim.lower()
    
    # Count matches for each category
    category_scores = {}
    
    for category, keywords in CLAIM_CATEGORIES.items():
        # Count how many keywords from this category appear in the claim
        matches = sum(1 for keyword in keywords if keyword.lower() in claim_lower)
        
        # Calculate a simple score based on matches
        if matches > 0:
            # Calculate a more significant score based on number of matches
            score = min(0.9, 0.3 + (matches * 0.1))  # Base 0.3 + 0.1 per match, max 0.9
            category_scores[category] = score
    
    # Find category with highest score
    if not category_scores:
        return "general", 0.3
    
    top_category = max(category_scores.items(), key=lambda x: x[1])
    category_name, confidence = top_category
    
    # If the top score is too low, return general
    if confidence < 0.3:
        return "general", 0.3
    
    return category_name, confidence

def get_category_specific_rss_feeds(category: str, max_feeds: int = 5) -> List[str]:
    """
    Get a list of RSS feeds specific to a category
    
    This function returns a subset of category-specific RSS feeds to use
    for evidence gathering.
    
    Args:
        category (str): The claim category
        max_feeds (int): Maximum number of feeds to return
        
    Returns:
        list: List of RSS feed URLs
    """
    # Get category-specific feeds
    category_feeds = CATEGORY_SPECIFIC_FEEDS.get(category, [])
    
    # Limit to max_feeds
    return category_feeds[:min(max_feeds, len(category_feeds))]

def get_fallback_category(category: str) -> Optional[str]:
    """
    Get a fallback category for a given category when insufficient evidence is found
    
    This function determines which alternative category to use when the
    primary category doesn't yield sufficient evidence. For example,
    AI claims fall back to technology sources.
    
    Args:
        category (str): The primary category to find a fallback for
        
    Returns:
        str or None: Fallback category name or None if no fallback exists
    """
    # Define fallback categories for specific categories
    fallbacks = {
        "ai": "technology",  # For AI claims, use technology as fallback
        # Other categories fall back to default RSS feeds, handled in retrieve_combined_evidence
    }
    
    return fallbacks.get(category)