File size: 21,087 Bytes
6d11371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dbfec8
6d11371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
#!/usr/bin/env python3
"""
Performance Evaluation Script for AskVeracity.

This script evaluates the performance of the AskVeracity fact-checking system
using a predefined set of test claims with known ground truth labels.
It collects metrics on accuracy, safety rate, processing time, and confidence scores
without modifying the core codebase.

Usage:
    python evaluate_performance.py [--limit N] [--output FILE]

Options:
    --limit N        Limit evaluation to first N claims (default: all)
    --output FILE    Save results to FILE (default: performance_results.json)
"""

import os
import sys
import json
import time
import argparse
from datetime import datetime
import matplotlib.pyplot as plt
from tabulate import tabulate
import numpy as np

# Add the parent directory to sys.path if this script is run directly
if __name__ == "__main__":
    sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

# Import the agent and performance tracker
import agent
from utils.performance import PerformanceTracker
from utils.models import initialize_models

# IMPORTANT NOTE FOR DEVELOPERS:
# The test claims below include many recent events that will become outdated.
# When using this script for testing or evaluation, please update these claims 
# with relevant and up-to-date examples to ensure meaningful results.
# Performance metrics are heavily influenced by the recency and verifiability 
# of these claims, so using outdated claims will likely lead to poor results.

# Define the test claims with ground truth labels
TEST_CLAIMS = [
    # True claims
    {"claim": "Dozens killed as gunmen massacre tourists in Kashmir beauty spot.", "expected": "True"},
    {"claim": "Pope Francis dies at 88.", "expected": "True"},
    {"claim": "OpenAI released new reasoning models called o3 and o4-mini.", "expected": "True"},
    {"claim": "Trump And Zelensky Clash Again As US Says Crimea Now Russian Territory.", "expected": "True"},
    {"claim": "Twelve states sue Donald Trump administration in trade court over chaotic and illegal tariff policy.", "expected": "True"},
    {"claim": "Zomato has been renamed to Eternal Limited.", "expected": "True"},
    {"claim": "The Taj Mahal is located in Agra.", "expected": "True"},
    {"claim": "ISRO achieves second docking with SpaDeX satellites.", "expected": "True"},
    {"claim": "The TV series Adolescence is streaming on Netflix.", "expected": "True"},
    {"claim": "Vladimir Putin offers to halt Ukraine invasion.", "expected": "True"},
    {"claim": "Meta released its Llama 4 language model.", "expected": "True"},
    {"claim": "Google launched Gemini 2.5 Pro Experimental, the first model in the Gemini 2.5 family.", "expected": "True"},
    {"claim": "Microsoft is rolling out improved Recall feature for Windows Insiders.", "expected": "True"},
    {"claim": "Microsoft announced a 1-bit language model that can run on CPU.", "expected": "True"},
    {"claim": "Royal Challengers Bengaluru beat Rajasthan Royals by 11 runs in yesterday's IPL match.", "expected": "True"},
    {"claim": "Anthropic introduced Claude Research.", "expected": "True"},
    {"claim": "The IMF has lowered India's growth projection for the fiscal year 2025-26 to 6.2 per cent.", "expected": "True"},
    {"claim": "In Bundesliga, Bayern Munich beat Heidenheim 4-0 last week.", "expected": "True"},
    {"claim": "Manchester United in Europa League semi-finals.", "expected": "True"},
    
    # False claims
    {"claim": "The Eiffel Tower is in Rome.", "expected": "False"},
    {"claim": "The earth is flat.", "expected": "False"},
    {"claim": "Rishi Sunak is the current Prime Minister of the UK.", "expected": "False"},
    {"claim": "New Zealand won the ICC Champions Trophy in 2025.", "expected": "False"},
    {"claim": "US President Donald trump to visit India next week.", "expected": "False"},
    {"claim": "Quantum computers have definitively solved the protein folding problem.", "expected": "False"},
    {"claim": "CRISPR gene editing has successfully cured type 1 diabetes in human clinical trials.", "expected": "False"},
    {"claim": "Google's new quantum computer, Willow, has demonstrated remarkable capabilities by solving mathematical problems far beyond the reach of the fastest supercomputers.", "expected": "False"},
    {"claim": "NASA confirmed that the James Webb Space Telescope has found definitive evidence of alien life on an exoplanet.", "expected": "False"},
    {"claim": "Google launched Gemini 3.", "expected": "False"},
    {"claim": "A solar eclipse was be seen in India on October 17, 2024.", "expected": "False"},
    {"claim": "Tom Cruise and Shah Rukh Khan have starred in a Bollywood movie in the past.", "expected": "False"},
    {"claim": "Germany has the highest GDP in the world.", "expected": "False"},
    
    # Uncertain claims
    {"claim": "Aliens have visited the Earth.", "expected": "Uncertain"},
    {"claim": "Information that falls into a black hole is permanently lost or destroyed.", "expected": "Uncertain"},
    {"claim": "Time travel into the past is possible.", "expected": "Uncertain"},
    {"claim": "Bigfoot (or Yeti) exists in remote wilderness areas.", "expected": "Uncertain"},
    {"claim": "Intelligent life exists elsewhere in the universe.", "expected": "Uncertain"},
    {"claim": "Yogi Adityanath will be the next Prime Minister of India.", "expected": "Uncertain"},
    {"claim": "Consciousness continues to exist after biological death.", "expected": "Uncertain"},
    {"claim": "There are multiple parallel universes.", "expected": "Uncertain"}
]

def setup_argument_parser():
    """
    Set up command line argument parsing.
    
    Returns:
        argparse.Namespace: Parsed command line arguments
    """
    parser = argparse.ArgumentParser(description="Evaluate AskVeracity performance")
    parser.add_argument("--limit", type=int, help="Limit evaluation to first N claims")
    parser.add_argument("--output", type=str, default="performance_results.json", 
                        help="Output file for results (default: performance_results.json)")
    return parser.parse_args()

def initialize_system():
    """
    Initialize the system for evaluation.
    
    Returns:
        object: Initialized LangGraph agent
    """
    print("Initializing models and agent...")
    initialize_models()
    eval_agent = agent.setup_agent()
    return eval_agent

def normalize_classification(classification):
    """
    Normalize classification labels for consistent comparison.
    
    Args:
        classification (str): Classification label from the system
        
    Returns:
        str: Normalized classification label ("True", "False", or "Uncertain")
    """
    if not classification:
        return "Uncertain"
    
    if "true" in classification.lower():
        return "True"
    elif "false" in classification.lower():
        return "False"
    else:
        return "Uncertain"

def is_correct(actual, expected):
    """
    Determine if the actual classification matches the expected classification.
    
    Args:
        actual (str): Actual classification from the system
        expected (str): Expected (ground truth) classification
        
    Returns:
        bool: True if classifications match, False otherwise
    """
    # Normalize both for comparison
    normalized_actual = normalize_classification(actual)
    normalized_expected = expected
    
    return normalized_actual == normalized_expected

def is_safe(actual, expected):
    """
    Determine if the classification is "safe" - either correct or abstained (Uncertain)
    instead of making an incorrect assertion.
    
    Args:
        actual (str): Actual classification from the system
        expected (str): Expected (ground truth) classification
        
    Returns:
        bool: True if the classification is safe, False otherwise
    """
    # Normalize both for comparison
    normalized_actual = normalize_classification(actual)
    normalized_expected = expected
    
    # If the classification is correct, it's definitely safe
    if normalized_actual == normalized_expected:
        return True
    
    # If the system classified as "Uncertain", that's safe (abstaining rather than wrong assertion)
    if normalized_actual == "Uncertain":
        return True
    
    # Otherwise, the system made an incorrect assertion (False as True or True as False)
    return False

def evaluate_claims(test_claims, eval_agent, limit=None):
    """
    Evaluate a list of claims using the fact-checking system.
    
    Args:
        test_claims (list): List of test claims with expected classifications
        eval_agent (object): Initialized LangGraph agent
        limit (int, optional): Maximum number of claims to evaluate
        
    Returns:
        tuple: (results, metrics)
            - results (list): Detailed results for each claim
            - metrics (dict): Aggregated performance metrics
    """
    # Initialize performance tracker
    performance_tracker = PerformanceTracker()
    
    # Limit the number of claims if requested
    if limit and limit > 0:
        claims_to_evaluate = test_claims[:limit]
    else:
        claims_to_evaluate = test_claims
    
    results = []
    total_count = len(claims_to_evaluate)
    correct_count = 0
    safe_count = 0
    
    # Classification counts
    classification_counts = {"True": 0, "False": 0, "Uncertain": 0}
    
    # Track processing times by expected classification
    processing_times = {"True": [], "False": [], "Uncertain": []}
    
    # Confidence scores by expected classification
    confidence_scores = {"True": [], "False": [], "Uncertain": []}
    
    # Track correct classifications by expected classification
    correct_by_class = {"True": 0, "False": 0, "Uncertain": 0}
    safe_by_class = {"True": 0, "False": 0, "Uncertain": 0}
    total_by_class = {"True": 0, "False": 0, "Uncertain": 0}
    
    print(f"Evaluating {len(claims_to_evaluate)} claims...")
    
    # Process each claim
    for idx, test_case in enumerate(claims_to_evaluate):
        claim = test_case["claim"]
        expected = test_case["expected"]
        
        print(f"\nProcessing claim {idx+1}/{len(claims_to_evaluate)}: {claim}")
        
        try:
            # Process the claim and measure time
            start_time = time.time()
            result = agent.process_claim(claim, eval_agent)
            total_time = time.time() - start_time
            
            # Extract classification and confidence
            classification = result.get("classification", "Uncertain")
            confidence = result.get("confidence", 0.0)
            
            # Normalize classification for comparison
            normalized_classification = normalize_classification(classification)
            
            # Check if classification is correct
            correct = is_correct(normalized_classification, expected)
            if correct:
                correct_count += 1
                correct_by_class[expected] += 1
            
            # Check if classification is safe
            safe = is_safe(normalized_classification, expected)
            if safe:
                safe_count += 1
                safe_by_class[expected] += 1
            
            # Update classification count
            classification_counts[normalized_classification] = classification_counts.get(normalized_classification, 0) + 1
            
            # Update counts by expected class
            total_by_class[expected] += 1
            
            # Update processing times
            processing_times[expected].append(total_time)
            
            # Update confidence scores
            confidence_scores[expected].append(confidence)
            
            # Save detailed result
            detail_result = {
                "claim": claim,
                "expected": expected,
                "actual": normalized_classification,
                "correct": correct,
                "safe": safe,
                "confidence": confidence,
                "processing_time": total_time
            }
            
            results.append(detail_result)
            
            # Print progress indicator
            outcome = "βœ“" if correct else "βœ—"
            safety = "(safe)" if safe and not correct else ""
            print(f"  Result: {normalized_classification} (Expected: {expected}) {outcome} {safety}")
            print(f"  Time: {total_time:.2f}s, Confidence: {confidence:.2f}")
            
        except Exception as e:
            print(f"Error processing claim: {str(e)}")
            results.append({
                "claim": claim,
                "expected": expected,
                "error": str(e)
            })
    
    # Calculate performance metrics
    accuracy = correct_count / total_count if total_count > 0 else 0
    safety_rate = safe_count / total_count if total_count > 0 else 0
    
    # Calculate per-class metrics
    class_metrics = {}
    for cls in ["True", "False", "Uncertain"]:
        class_accuracy = correct_by_class[cls] / total_by_class[cls] if total_by_class[cls] > 0 else 0
        class_safety_rate = safe_by_class[cls] / total_by_class[cls] if total_by_class[cls] > 0 else 0
        avg_time = sum(processing_times[cls]) / len(processing_times[cls]) if processing_times[cls] else 0
        avg_confidence = sum(confidence_scores[cls]) / len(confidence_scores[cls]) if confidence_scores[cls] else 0
        
        class_metrics[cls] = {
            "accuracy": class_accuracy,
            "safety_rate": class_safety_rate,
            "count": total_by_class[cls],
            "correct": correct_by_class[cls],
            "safe": safe_by_class[cls],
            "avg_processing_time": avg_time,
            "avg_confidence": avg_confidence
        }
    
    # Calculate overall metrics
    all_times = [r.get("processing_time", 0) for r in results if "processing_time" in r]
    all_confidence = [r.get("confidence", 0) for r in results if "confidence" in r]
    
    metrics = {
        "total_claims": total_count,
        "correct_claims": correct_count,
        "safe_claims": safe_count,
        "accuracy": accuracy,
        "safety_rate": safety_rate,
        "avg_processing_time": sum(all_times) / len(all_times) if all_times else 0,
        "avg_confidence": sum(all_confidence) / len(all_confidence) if all_confidence else 0,
        "classification_counts": classification_counts,
        "per_class_metrics": class_metrics
    }
    
    return results, metrics

def save_results(results, metrics, output_file):
    """
    Save evaluation results to a JSON file.
    
    Args:
        results (list): Detailed results for each claim
        metrics (dict): Aggregated performance metrics
        output_file (str): Path to output file
    """
    output_data = {
        "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        "metrics": metrics,
        "detailed_results": results
    }
    
    with open(output_file, 'w') as f:
        json.dump(output_data, f, indent=2)
    
    print(f"\nResults saved to {output_file}")

def print_summary(metrics):
    """
    Print a summary of performance metrics.
    
    Args:
        metrics (dict): Aggregated performance metrics
    """
    print("\n" + "="*70)
    print(f"PERFORMANCE SUMMARY")
    print("="*70)
    
    # Overall metrics
    print(f"\nOverall Metrics:")
    print(f"Total Claims: {metrics['total_claims']}")
    print(f"Correctly Classified: {metrics['correct_claims']}")
    print(f"Safely Classified: {metrics['safe_claims']}")
    print(f"Accuracy: {metrics['accuracy']:.2%}")
    print(f"Safety Rate: {metrics['safety_rate']:.2%}")
    print(f"Average Processing Time: {metrics['avg_processing_time']:.2f} seconds")
    print(f"Average Confidence Score: {metrics['avg_confidence']:.2f}")
    
    # Per-class metrics as table
    print("\nPer-Class Performance:")
    table_data = []
    headers = ["Class", "Count", "Correct", "Safe", "Accuracy", "Safety Rate", "Avg Time", "Avg Confidence"]
    
    for cls, cls_metrics in metrics['per_class_metrics'].items():
        table_data.append([
            cls,
            cls_metrics['count'],
            cls_metrics['correct'],
            cls_metrics['safe'],
            f"{cls_metrics['accuracy']:.2%}",
            f"{cls_metrics['safety_rate']:.2%}",
            f"{cls_metrics['avg_processing_time']:.2f}s",
            f"{cls_metrics['avg_confidence']:.2f}"
        ])
    
    print(tabulate(table_data, headers=headers, tablefmt="grid"))

def create_charts(metrics, output_dir="."):
    """
    Create visualizations of performance metrics.
    
    Args:
        metrics (dict): Aggregated performance metrics
        output_dir (str): Directory to save charts
    """
    try:
        # Create output directory if it doesn't exist
        os.makedirs(output_dir, exist_ok=True)
        
        # Plot 1: Accuracy by class
        plt.figure(figsize=(10, 6))
        classes = list(metrics['per_class_metrics'].keys())
        accuracies = [metrics['per_class_metrics'][cls]['accuracy'] for cls in classes]
        
        plt.bar(classes, accuracies, color=['green', 'red', 'gray'])
        plt.title('Accuracy by Classification Type')
        plt.xlabel('Classification')
        plt.ylabel('Accuracy')
        plt.ylim(0, 1)
        
        for i, v in enumerate(accuracies):
            plt.text(i, v + 0.02, f"{v:.2%}", ha='center')
        
        plt.tight_layout()
        plt.savefig(os.path.join(output_dir, 'accuracy_by_class.png'))
        plt.close()  # Close the figure to free memory
        
        # Plot 2: Safety rate by class
        plt.figure(figsize=(10, 6))
        safety_rates = [metrics['per_class_metrics'][cls]['safety_rate'] for cls in classes]
        
        plt.bar(classes, safety_rates, color=['green', 'red', 'gray'])
        plt.title('Safety Rate by Classification Type')
        plt.xlabel('Classification')
        plt.ylabel('Safety Rate')
        plt.ylim(0, 1)
        
        for i, v in enumerate(safety_rates):
            plt.text(i, v + 0.02, f"{v:.2%}", ha='center')
        
        plt.tight_layout()
        plt.savefig(os.path.join(output_dir, 'safety_rate_by_class.png'))
        plt.close()  # Close the figure to free memory
        
        # Plot 3: Processing time by class
        plt.figure(figsize=(10, 6))
        times = [metrics['per_class_metrics'][cls]['avg_processing_time'] for cls in classes]
        
        plt.bar(classes, times, color=['green', 'red', 'gray'])
        plt.title('Average Processing Time by Classification Type')
        plt.xlabel('Classification')
        plt.ylabel('Time (seconds)')
        
        for i, v in enumerate(times):
            plt.text(i, v + 0.5, f"{v:.2f}s", ha='center')
        
        plt.tight_layout()
        plt.savefig(os.path.join(output_dir, 'processing_time_by_class.png'))
        plt.close()  # Close the figure to free memory
        
        # Plot 4: Confidence scores by class
        plt.figure(figsize=(10, 6))
        confidence = [metrics['per_class_metrics'][cls]['avg_confidence'] for cls in classes]
        
        plt.bar(classes, confidence, color=['green', 'red', 'gray'])
        plt.title('Average Confidence Score by Classification Type')
        plt.xlabel('Classification')
        plt.ylabel('Confidence Score')
        plt.ylim(0, 1)
        
        for i, v in enumerate(confidence):
            plt.text(i, v + 0.02, f"{v:.2f}", ha='center')
        
        plt.tight_layout()
        plt.savefig(os.path.join(output_dir, 'confidence_by_class.png'))
        plt.close()  # Close the figure to free memory
        
        print(f"\nCharts created in {output_dir}")
        
    except Exception as e:
        print(f"Error creating charts: {str(e)}")
        print("Continuing without charts.")

def main():
    """Main evaluation function that runs the entire evaluation process."""
    # Parse arguments
    args = setup_argument_parser()
    
    # Initialize the agent
    eval_agent = initialize_system()
    
    # Create results directory if it doesn't exist
    results_dir = "results"
    os.makedirs(results_dir, exist_ok=True)
    
    # Set output file path
    output_file = args.output
    if not os.path.isabs(output_file):
        output_file = os.path.join(results_dir, output_file)
    
    # Evaluate claims
    results, metrics = evaluate_claims(TEST_CLAIMS, eval_agent, args.limit)
    # results, metrics = evaluate_claims(TEST_CLAIMS, eval_agent, 1)
    
    # Print summary
    print_summary(metrics)
    
    # Save results
    save_results(results, metrics, output_file)
    
    # Create charts
    try:
        from tabulate import tabulate
        import matplotlib.pyplot as plt
        create_charts(metrics, results_dir)
    except ImportError:
        print("\nCould not create charts. Please install matplotlib and tabulate packages:")
        print("pip install matplotlib tabulate")

if __name__ == "__main__":
    main()