File size: 7,816 Bytes
6d11371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# AskVeracity Configuration Guide

This document describes how to set up and configure the AskVeracity fact-checking and misinformation detection system.

## Prerequisites

Before setting up AskVeracity, ensure you have:

- Python 3.8 or higher
- pip (Python package installer)
- Git (for cloning the repository)
- API keys for external services

## Installation

### Local Development

1. Clone the repository:
   ```bash
   git clone https://github.com/yourusername/askveracity.git
   cd askveracity
   ```

2. Install the required dependencies:
   ```bash
   pip install -r requirements.txt
   ```

3. Download the required spaCy model:
   ```bash
   python -m spacy download en_core_web_sm
   ```

## API Key Configuration

AskVeracity requires several API keys to access external services. You have two options for configuring these keys:

### Option 1: Using Streamlit Secrets (Recommended for Local Development)

1. Create a `.streamlit` directory if it doesn't exist:
   ```bash
   mkdir -p .streamlit
   ```

2. Create a `secrets.toml` file:
   ```bash
   cp .streamlit/secrets.toml.example .streamlit/secrets.toml
   ```

3. Edit the `.streamlit/secrets.toml` file with your API keys:
   ```toml
   OPENAI_API_KEY = "your_openai_api_key"
   NEWS_API_KEY = "your_news_api_key"
   FACTCHECK_API_KEY = "your_factcheck_api_key"
   ```

### Option 2: Using Environment Variables

1. Create a `.env` file in the root directory:
   ```bash
   touch .env
   ```

2. Add your API keys to the `.env` file:
   ```
   OPENAI_API_KEY=your_openai_api_key
   NEWS_API_KEY=your_news_api_key
   FACTCHECK_API_KEY=your_factcheck_api_key
   ```

3. Load the environment variables:
   ```python
   # In Python
   from dotenv import load_dotenv
   load_dotenv()
   ```

   Or in your terminal:
   ```bash
   # Unix/Linux/MacOS
   source .env
   
   # Windows
   # Install python-dotenv[cli] and run
   dotenv run streamlit run app.py
   ```

## Required API Keys

AskVeracity uses the following external APIs:

1. **OpenAI API** (Required)
   - Used for claim extraction, classification, and explanation generation
   - Get an API key from [OpenAI's website](https://platform.openai.com/)

2. **News API** (Optional but recommended)
   - Used for retrieving news article evidence
   - Get an API key from [NewsAPI.org](https://newsapi.org/)

3. **Google Fact Check Tools API** (Optional but recommended)
   - Used for retrieving fact-checking evidence
   - Get an API key from [Google Fact Check Tools API](https://developers.google.com/fact-check/tools/api)

## Configuration Files

### config.py

The main configuration file is `config.py`, which contains:

- API key handling
- Rate limiting configuration
- Error backoff settings
- RSS feed settings

Important configuration sections in `config.py`:

```python
# Rate limiting configuration
RATE_LIMITS = {
    # api_name: {"requests": max_requests, "period": period_in_seconds}
    "newsapi": {"requests": 100, "period": 3600},  # 100 requests per hour
    "factcheck": {"requests": 1000, "period": 86400},  # 1000 requests per day
    "semantic_scholar": {"requests": 10, "period": 300},  # 10 requests per 5 minutes
    "wikidata": {"requests": 60, "period": 60},  # 60 requests per minute
    "wikipedia": {"requests": 200, "period": 60},  # 200 requests per minute
    "rss": {"requests": 300, "period": 3600}  # 300 RSS requests per hour
}

# Error backoff settings
ERROR_BACKOFF = {
    "max_retries": 5,
    "initial_backoff": 1,  # seconds
    "backoff_factor": 2,  # exponential backoff
}

# RSS feed settings
RSS_SETTINGS = {
    "max_feeds_per_request": 10,  # Maximum number of feeds to try per request
    "max_age_days": 3,            # Maximum age of RSS items to consider
    "timeout_seconds": 5,         # Timeout for RSS feed requests
    "max_workers": 5              # Number of parallel workers for fetching feeds
}
```

### Category-Specific RSS Feeds

Category-specific RSS feeds are defined in `modules/category_detection.py`. These feeds are used to prioritize sources based on the detected claim category:

```python
CATEGORY_SPECIFIC_FEEDS = {
    "ai": [
        "https://www.artificialintelligence-news.com/feed/",
        "https://openai.com/news/rss.xml",
        # Additional AI-specific feeds
    ],
    "science": [
        "https://www.science.org/rss/news_current.xml",
        "https://www.nature.com/nature.rss",
        # Additional science feeds
    ],
    # Additional categories
}
```

## Hugging Face Spaces Deployment

### Setting Up a Space

1. Create a new Space on Hugging Face:
   - Go to https://huggingface.co/spaces
   - Click "Create new Space"
   - Select "Streamlit" as the SDK
   - Choose the hardware tier (use the default 16GB RAM)

2. Upload the project files:
   - You can upload files directly through the Hugging Face web interface
   - Alternatively, use Git to push to the Hugging Face repository
   - Make sure to include all necessary files including requirements.txt

### Setting Up Secrets

1. Add API keys as secrets:
   - Go to the "Settings" tab of your Space
   - Navigate to the "Repository secrets" section
   - Add your API keys:
     - `OPENAI_API_KEY`
     - `NEWS_API_KEY`
     - `FACTCHECK_API_KEY`

### Configuring the Space

Edit the metadata in the `README.md` file:

```yaml
---
title: Askveracity
emoji: πŸ“‰
colorFrom: blue
colorTo: pink
sdk: streamlit
sdk_version: 1.44.1
app_file: app.py
pinned: false
license: mit
short_description: Fact-checking and misinformation detection tool.
---
```

## Custom Configuration

### Adjusting Rate Limits

You can adjust the rate limits in `config.py` based on your API subscription levels:

```python
# Update for higher tier News API subscription
RATE_LIMITS["newsapi"] = {"requests": 500, "period": 3600}  # 500 requests per hour
```

### Modifying RSS Feeds

The list of RSS feeds can be found in `modules/rss_feed.py` and category-specific feeds in `modules/category_detection.py`. You can add or remove feeds as needed.

### Performance Evaluation

The system includes a performance evaluation script `evaluate_performance.py` that:

1. Runs the fact-checking system on a predefined set of test claims
2. Calculates accuracy, safety rate, processing time, and confidence metrics
3. Generates visualization charts in the `results/` directory
4. Saves detailed results to `results/performance_results.json`

To run the performance evaluation:

```bash
python evaluate_performance.py [--limit N] [--output FILE]
```

- `--limit N`: Limit evaluation to first N claims (default: all)
- `--output FILE`: Save results to FILE (default: performance_results.json)

## Running the Application

Start the Streamlit app:

```bash
streamlit run app.py
```

The application will be available at http://localhost:8501 by default.

## Troubleshooting

### API Key Issues

If you encounter API key errors:

1. Verify that your API keys are set correctly
2. Check the logs for specific error messages
3. Make sure API keys are not expired or rate-limited

### Model Loading Errors

If spaCy model fails to load:

```bash
# Reinstall the model
python -m spacy download en_core_web_sm --force
```

### Rate Limiting

If you encounter rate limiting issues:

1. Reduce the number of requests by adjusting `RATE_LIMITS` in `config.py`
2. Increase the backoff parameters in `ERROR_BACKOFF`
3. Subscribe to higher API tiers if available

### Memory Issues

If the application crashes due to memory issues:

1. Reduce the number of parallel workers in `RSS_SETTINGS`
2. Limit the maximum number of evidence items processed

## Performance Optimization

For better performance:

1. Upgrade to a higher-tier OpenAI model for improved accuracy
2. Increase the number of parallel workers for evidence retrieval
3. Add more relevant RSS feeds to improve evidence gathering