whisper / app.py
ankandrew's picture
Create app.py
0ce1e8d verified
raw
history blame
4.44 kB
"""
Demo to run OpenAI Whisper using HuggingFace ZeroGPU.
This way we can test default Whisper models provided by OpenAI, for later comparison with fine-tuned ones.
"""
import subprocess
import tempfile
from pathlib import Path
import gradio as gr
import spaces
import torch
import whisper
YT_AUDIO_FORMAT = "bestaudio[ext=m4a]"
def download_youtube(url: str, tmp_dir: Path) -> Path:
"""Download the audio track from a YouTube video and return the local path."""
out_path = tmp_dir / r"%\(id)s.%(ext)s"
cmd = [
"yt-dlp",
"--quiet",
"--no-warnings",
"--extract-audio",
"--audio-format",
"m4a",
"--audio-quality",
"0",
"-f",
YT_AUDIO_FORMAT,
"-o",
str(out_path),
url,
]
result = subprocess.run(cmd, capture_output=True, check=True)
if result.returncode != 0:
raise RuntimeError(f"yt-dlp failed: {result.stderr.decode()}")
files = list(tmp_dir.glob("*.m4a"))
if not files:
raise FileNotFoundError("Could not locate downloaded audio.")
return files[0]
def _get_input_path(audio, youtube_url):
if youtube_url and youtube_url.strip():
with tempfile.TemporaryDirectory() as tmp:
return download_youtube(youtube_url, Path(tmp))
elif audio is not None:
return audio
else:
raise gr.Error("Provide audio or a YouTube URL")
def make_results_table(results):
rows = []
for r in results:
row = [r["model"], r["language"], r["text"]]
rows.append(row)
return rows
@spaces.GPU
def transcribe_audio(
model_sizes: list[str],
audio: str,
youtube_url: str,
return_timestamps: bool,
temperature: float,
):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
results = []
for size in model_sizes:
model = whisper.load_model(size, device=device)
inp = _get_input_path(audio, youtube_url)
out = model.transcribe(
str(inp),
word_timestamps=return_timestamps,
temperature=temperature,
verbose=False,
)
text = out["text"].strip()
segments = out["segments"] if return_timestamps else []
results.append(
{
"model": size,
"language": out["language"],
"text": text,
"segments": segments,
}
)
df_results = make_results_table(results, return_timestamps)
return df_results
def build_demo() -> gr.Blocks:
with gr.Blocks(title="🗣️ Whisper Transcription Demo (HF Spaces Zero-GPU)") as whisper_demo:
gr.Markdown("""
# Whisper Transcription Demo
Run Whisper transcription on audio or YouTube video. Whisper is a general-purpose speech recognition model,
trained on a large dataset
""")
with gr.Row():
model_choices = gr.Dropdown(
label="Model size(s)",
choices=["tiny", "base", "small", "medium", "large", "turbo"],
value=["turbo"],
multiselect=True,
allow_custom_value=False,
)
ts_checkbox = gr.Checkbox(
label="Return word timestamps",
interactive=False,
value=False,
)
temp_slider = gr.Slider(
label="Decoding temperature",
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.01,
)
audio_input = gr.Audio(
label="Upload or record audio",
sources=["upload"],
type="filepath",
)
yt_input = gr.Textbox(
label="... or paste a YouTube URL (audio only)",
placeholder="https://youtu.be/XYZ",
)
with gr.Row():
transcribe_btn = gr.Button("Transcribe 🏁")
out_table = gr.Dataframe(
headers=["Model", "Language", "Transcript"],
datatype=["str", "str", "str"],
label="Transcription Results",
)
transcribe_btn.click(
transcribe_audio,
inputs=[model_choices, audio_input, yt_input, ts_checkbox, temp_slider],
outputs=[out_table],
)
return whisper_demo
if __name__ == "__main__":
demo = build_demo()
demo.launch()