ankandrew
commited on
Commit
·
2e3ddd8
1
Parent(s):
f0c7145
Update gradio demo
Browse files
app.py
CHANGED
@@ -1,11 +1,111 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
|
|
|
|
3 |
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
11 |
-
demo.launch()
|
|
|
1 |
+
import subprocess
|
2 |
import gradio as gr
|
3 |
import spaces
|
4 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
5 |
+
from qwen_vl_utils import process_vision_info
|
6 |
|
7 |
|
8 |
+
subprocess.run(
|
9 |
+
"pip install flash-attn --no-build-isolation",
|
10 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
11 |
+
shell=True,
|
12 |
+
)
|
13 |
|
14 |
+
# Mapping user-friendly names to HF model IDs
|
15 |
+
MODEL_NAMES = {
|
16 |
+
"Qwen2.5-VL-7B-Instruct-AWQ": "Qwen/Qwen2.5-VL-7B-Instruct-AWQ",
|
17 |
+
"Qwen2.5-VL-3B-Instruct-AWQ": "Qwen/Qwen2.5-VL-3B-Instruct-AWQ",
|
18 |
+
"Qwen2.5-VL-7B-Instruct": "Qwen/Qwen2.5-VL-7B-Instruct",
|
19 |
+
"Qwen2.5-VL-3B-Instruct": "Qwen/Qwen2.5-VL-3B-Instruct",
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
@spaces.GPU(duration=300)
|
24 |
+
def run_inference(model_key, input_type, text, image, video, fps):
|
25 |
+
"""
|
26 |
+
Load the selected Qwen2.5-VL model and run inference on text, image, or video.
|
27 |
+
"""
|
28 |
+
model_id = MODEL_NAMES[model_key]
|
29 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
30 |
+
model_id,
|
31 |
+
torch_dtype="auto",
|
32 |
+
device_map="auto"
|
33 |
+
)
|
34 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
35 |
+
|
36 |
+
# Text-only inference
|
37 |
+
if input_type == "text":
|
38 |
+
inputs = processor(
|
39 |
+
text=text,
|
40 |
+
return_tensors="pt",
|
41 |
+
padding=True
|
42 |
+
)
|
43 |
+
inputs = inputs.to(model.device)
|
44 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
45 |
+
return processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
46 |
+
|
47 |
+
# Multimodal inference (image or video)
|
48 |
+
content = []
|
49 |
+
if input_type == "image" and image:
|
50 |
+
content.append({"type": "image", "image": image})
|
51 |
+
elif input_type == "video" and video:
|
52 |
+
# Ensure file URI for local files
|
53 |
+
video_src = video if str(video).startswith("file://") else f"file://{video}"
|
54 |
+
content.append({"type": "video", "video": video_src, "fps": fps})
|
55 |
+
content.append({"type": "text", "text": text or ""})
|
56 |
+
msg = [{"role": "user", "content": content}]
|
57 |
+
|
58 |
+
# Prepare inputs for model with video kwargs
|
59 |
+
text_prompt = processor.apply_chat_template(
|
60 |
+
msg, tokenize=False, add_generation_prompt=True
|
61 |
+
)
|
62 |
+
image_inputs, video_inputs, video_kwargs = process_vision_info(msg, return_video_kwargs=True)
|
63 |
+
inputs = processor(
|
64 |
+
text=[text_prompt],
|
65 |
+
images=image_inputs,
|
66 |
+
videos=video_inputs,
|
67 |
+
padding=True,
|
68 |
+
return_tensors="pt",
|
69 |
+
**video_kwargs
|
70 |
+
)
|
71 |
+
inputs = inputs.to(model.device)
|
72 |
+
|
73 |
+
gen_ids = model.generate(**inputs, max_new_tokens=512)
|
74 |
+
# Trim the prompt tokens
|
75 |
+
trimmed = [out_ids[len(inp_ids):] for inp_ids, out_ids in zip(inputs.input_ids, gen_ids)]
|
76 |
+
return processor.batch_decode(trimmed, skip_special_tokens=True)[0]
|
77 |
+
|
78 |
+
|
79 |
+
# Build Gradio interface
|
80 |
+
demo = gr.Blocks()
|
81 |
+
with demo:
|
82 |
+
gr.Markdown("# Qwen2.5-VL Multimodal Demo")
|
83 |
+
model_select = gr.Dropdown(list(MODEL_NAMES.keys()), label="Select Model")
|
84 |
+
input_type = gr.Radio(["text", "image", "video"], label="Input Type")
|
85 |
+
text_input = gr.Textbox(lines=3, placeholder="Enter text...", visible=True)
|
86 |
+
image_input = gr.Image(type="filepath", visible=False)
|
87 |
+
video_input = gr.Video(type="filepath", visible=False)
|
88 |
+
fps_input = gr.Slider(minimum=0.1, maximum=30.0, step=0.1, value=2.0, label="FPS", visible=False)
|
89 |
+
output = gr.Textbox(label="Output")
|
90 |
+
|
91 |
+
# Show/hide inputs based on selection
|
92 |
+
def update_inputs(choice):
|
93 |
+
return (
|
94 |
+
gr.update(visible=(choice == "text")),
|
95 |
+
gr.update(visible=(choice == "image")),
|
96 |
+
gr.update(visible=(choice == "video")),
|
97 |
+
gr.update(visible=(choice == "video"))
|
98 |
+
)
|
99 |
+
|
100 |
+
input_type.change(update_inputs, input_type, [text_input, image_input, video_input, fps_input])
|
101 |
+
run_btn = gr.Button("Generate")
|
102 |
+
run_btn.click(
|
103 |
+
run_inference,
|
104 |
+
[model_select, input_type, text_input, image_input, video_input, fps_input],
|
105 |
+
output
|
106 |
+
)
|
107 |
+
|
108 |
+
# Launch the app
|
109 |
+
if __name__ == "__main__":
|
110 |
+
demo.launch()
|
111 |
|
|
|
|