Spaces:
Sleeping
Sleeping
File size: 7,494 Bytes
ee46c3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
from openai import OpenAI
import google.generativeai as genai
from crawler import extract_data
import time
import os
from dotenv import load_dotenv
import gradio as gr
# from together import Together
# from transformers import AutoModel, AutoTokenizer
# from sklearn.metrics.pairwise import cosine_similarity
# import torch
#
# load_dotenv("../.env")
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
# together_client = Together(
# api_key=os.getenv("TOGETHER_API_KEY"),
# )
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
gemini_query = genai.GenerativeModel('gemini-2.0-flash-exp')
gemini_summarizer = genai.GenerativeModel('gemini-1.5-flash')
perplexity_client = OpenAI(api_key=os.getenv("PERPLEXITY_API_KEY"), base_url="https://api.perplexity.ai")
# gpt_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# with torch.no_grad():
# model = AutoModel.from_pretrained('BM-K/KoSimCSE-roberta')
# tokenizer = AutoTokenizer.from_pretrained('BM-K/KoSimCSE-roberta')
# def cal_score(input_data):
# similarity_scores = []
# # Initialize model and tokenizer inside the function
# with torch.no_grad():
# inputs = tokenizer(input_data, padding=True, truncation=True, return_tensors="pt")
# outputs = model.get_input_embeddings()(inputs["input_ids"])
# for ind in range(1, outputs.size(0)):
# a, b = outputs[0], outputs[ind]
# a = a.reshape(1, -1)
# b = b.reshape(1, -1)
# a_norm = torch.nn.functional.normalize(a, p=2, dim=1)
# b_norm = torch.nn.functional.normalize(b, p=2, dim=1)
# similarity_scores.append(cosine_similarity(a_norm, b_norm)) # Scalar value
# return similarity_scores
def get_answers( query: str ):
context = extract_data(query, 1)
# if len(context) > 1:
# scores = cal_score( [query] + [answer['questionDetails'] for answer in context] )
# context = [context for _, context in sorted(zip(scores, context), key=lambda x: x[0], reverse=True)]
# mean_score = sum(scores) / len(scores)
# context = [ctx for score, ctx in zip(scores, context) if score >= mean_score]
return context
def get_gemini_query( message: str ):
print(">>> Starting gemini query generation...")
response = gemini_query.generate_content(message)
print("Finished gemini query generation: ", response.text)
return response.text
def get_naver_answers( message: str ):
print(">>> Starting naver extraction...")
print("Question: ", message)
if len(message) > 300:
message = get_gemini_query(f"{message}\n ์์ ๋ด์ฉ์ ์งง์ ์ ๋ชฉ์ผ๋ก ์์ฝํฉ๋๋ค. ์ ๋ชฉ๋ง ๋ณด์ฌ์ฃผ์ธ์. ๋๋ตํ์ง ๋ง์ธ์. ํ๊ตญ์ด๋ก๋ง ๋ต๋ณํด์ฃผ์ธ์!!!")
print( "Query: ", message)
context = get_answers( message )
sorted_answers = [
f"{index}. ์ง๋ฌธ: {answer['questionDetails']}" + '\n' + f" ๋ต๋ณ: {'. '.join(answer['answers'])} " + '\n'
for (index, answer) in enumerate(context)
]
document = '\n'.join(sorted_answers)
return document
def get_perplexity_answer( message: str ):
print(">>> Starting perplexity extraction...")
messages = [
{
"role": "system",
"content": (
"You are an artificial intelligence assistant and you need to "
"engage in a helpful, CONCISE, polite question-answer conversation with a user."
),
},
{
"role": "user",
"content": (
message
),
},
]
response = perplexity_client.chat.completions.create(
model="llama-3.1-sonar-small-128k-online",
messages=messages
)
return response.choices[0].message.content
def chatFunction( history ):
# MAX_TOKEN_LIMIT = 58000
start_time = time.time()
message = history[-1][0]
# content = f' ์ง๋ฌธ๊ณผ ๋ต๋ณ์ผ๋ก ๊ตฌ์ฑ๋ ๋ฌธ์๋ฅผ ๋๋ฆฌ๊ฒ ์ต๋๋ค. \
# ์๋์ ์ ๊ณต๋ ์ง๋ฌธ์ ๋ตํ๊ธฐ ์ํด ์ค์ํ ์ ๋ณด๋ฅผ ์ถ์ถํ์ธ์. \
# ํ๊ตญ์ด๋ก๋ง ๋ต๋ณํ์ธ์. ๊ตฌ์ฒด์ ์ด์ง๋ง ๊ฐ๊ฒฐํ๊ฒ ์์ฑํ์ธ์. \
# ์ค์ ๋ณดํ์๋ด์ฌ๊ฐ ๋ต๋ณ์ ํ๋ฏ์ด ์น์ ํ ๋ต๋ณ์ ํด ์ฃผ์ธ์. \n ์ง๋ฌธ: {message}\n ๋ฌธ์: '
content = f' ๋ณดํ์ค๊ณ์ฌ๊ฐ ๋ต์ ์ค์, ๋ ๋ง์ ์ง๋ฌธ์ด๋ ํฉ๋นํ ๋ณดํ์ ๊ฐ์
ํ ์ ์๋๋ก ๋ต๋ณ์ ํ๋ ค๊ณ ํฉ๋๋ค. \
๋ฌธ์์ ์๋ ์ 3์ ์ธ๊ธ์ 1์ธ์นญ์ผ๋ก โโ๋ฐ๊พธ์ธ์. ์๋ฅผ ๋ค์ด "KB์ํด๋ณดํ ์ค๊ณ์ฌ OOO์
๋๋ค" ๋ฑ ์ 3์๊ฐ ์ธ๊ธ๋ ๊ฒฝ์ฐ "๋ณดํ๊ธฐ๊ด์
๋๋ค"๋ก ๋์ฒดํฉ๋๋ค. \
์ด๋ฌํ ๋ต๋ณ์ ํตํด์ ์ง๋ฌธ์๊ฐ ์ด ๋ต๋ณ์ ๋ณด๊ณ ๋ณดํ์ค๊ณ์ฌ์๊ฒ ๋ ์ ๋ขฐ๋ฅผ ๊ฐ๊ณ ์ถ๊ฐ ์ง๋ฌธ์ด ์์ผ๋ฉด ๋ฌผ์ด๋ณผ ์ ์๋๋ก ํ๋ ค๊ณ ํฉ๋๋ค. \
์ค์ ๋ณดํ์๋ด์ฌ๊ฐ ๋ต๋ณ์ ํ๋ฏ์ด ์น์ ํ ๋ต๋ณ์ ํด ์ฃผ์ธ์. \n ์ง๋ฌธ: {message}\n ๋ฌธ์: '
naver_docs = get_naver_answers( message )
print(len(naver_docs))
# if len(naver_docs) > MAX_TOKEN_LIMIT:
# print("HERE")
# start_tmp = time.time()
# overlap = 200
# answers = []
# split_len = len(naver_docs) // ( ( len(naver_docs) - MAX_TOKEN_LIMIT ) // MAX_TOKEN_LIMIT + 2 ) + 1
# print(len(naver_docs) // split_len)
# for i in range( len(naver_docs) // split_len ):
# print("HERE: ", i)
# if i == 0:
# split = naver_docs[:split_len]
# else:
# split = naver_docs[i * split_len - overlap: (i + 1) * split_len]
# answer, _ = get_qwen_small_answer(f"Summarize important points in a paragraph, given the information below, using only Korean language. Give me only the summary!!! \n {split}")
# answers.append(answer)
# print("Answers: ", answers)
# naver_docs = '\n'.join(answers)
# naver_time_taken += time.time() - start_tmp
# print("Post chunking length: ", len(naver_docs) )
content += "\n Naver ๋ฌธ์: " + naver_docs
### Extracting from Perplexity ###
perplexity_resp = get_perplexity_answer( message )
content += "\n Perplexity ๋ฌธ์: " + perplexity_resp
print(">>> Starting Gemini summarization...")
response = gemini_summarizer.generate_content( content, stream=True )
history[-1][1] = ''
ans = ""
for chunk in response:
ans += chunk.text.replace("*", "")
yield ans.strip() + "\n"
time.sleep(0.05)
print("Finished Gemini summarization")
print("Time taken: ", time.time() - start_time)
def set_user_response( message: str, history: list ):
history.append( [message, None] )
return '', history
### Server-side code ###
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=['*'],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
async def root():
return {"message": "Hello World"}
class Message(BaseModel):
message: str
@app.post("/chat")
async def chat( message: Message ):
history = [[message.message, None]]
return StreamingResponse(
chatFunction(history),
media_type='text/event-stream'
)
|