File size: 7,494 Bytes
ee46c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from openai import OpenAI
import google.generativeai as genai
from crawler import extract_data
import time
import os
from dotenv import load_dotenv
import gradio as gr
# from together import Together
# from transformers import AutoModel, AutoTokenizer
# from sklearn.metrics.pairwise import cosine_similarity
# import torch
# 
# load_dotenv("../.env")
# os.environ["TOKENIZERS_PARALLELISM"] = "false"

# together_client = Together(
#     api_key=os.getenv("TOGETHER_API_KEY"),
# )

genai.configure(api_key=os.getenv("GEMINI_API_KEY"))

gemini_query = genai.GenerativeModel('gemini-2.0-flash-exp')

gemini_summarizer = genai.GenerativeModel('gemini-1.5-flash')

perplexity_client = OpenAI(api_key=os.getenv("PERPLEXITY_API_KEY"), base_url="https://api.perplexity.ai")
# gpt_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

# with torch.no_grad():
#     model = AutoModel.from_pretrained('BM-K/KoSimCSE-roberta')
#     tokenizer = AutoTokenizer.from_pretrained('BM-K/KoSimCSE-roberta')

# def cal_score(input_data):
#     similarity_scores = []
#     # Initialize model and tokenizer inside the function
#     with torch.no_grad():
#         inputs = tokenizer(input_data, padding=True, truncation=True, return_tensors="pt")
#         outputs = model.get_input_embeddings()(inputs["input_ids"])
        
#         for ind in range(1, outputs.size(0)):
#             a, b = outputs[0], outputs[ind]
            
#             a = a.reshape(1, -1)
#             b = b.reshape(1, -1)

#             a_norm = torch.nn.functional.normalize(a, p=2, dim=1)
#             b_norm = torch.nn.functional.normalize(b, p=2, dim=1)

#             similarity_scores.append(cosine_similarity(a_norm, b_norm)) # Scalar value
#     return similarity_scores

def get_answers( query: str ):
    context = extract_data(query, 1)
    # if len(context) > 1:
    #     scores = cal_score( [query] + [answer['questionDetails'] for answer in context] )
    #     context = [context for _, context in sorted(zip(scores, context), key=lambda x: x[0], reverse=True)]
    #     mean_score = sum(scores) / len(scores)
    #     context = [ctx for score, ctx in zip(scores, context) if score >= mean_score]
    return context

def get_gemini_query( message: str ):
    print(">>> Starting gemini query generation...")

    response = gemini_query.generate_content(message)

    print("Finished gemini query generation: ", response.text)
    return response.text

def get_naver_answers( message: str ):
    print(">>> Starting naver extraction...")
    print("Question: ", message)

    if len(message) > 300:
        message = get_gemini_query(f"{message}\n ์œ„์˜ ๋‚ด์šฉ์„ ์งง์€ ์ œ๋ชฉ์œผ๋กœ ์š”์•ฝํ•ฉ๋‹ˆ๋‹ค. ์ œ๋ชฉ๋งŒ ๋ณด์—ฌ์ฃผ์„ธ์š”. ๋Œ€๋‹ตํ•˜์ง€ ๋งˆ์„ธ์š”. ํ•œ๊ตญ์–ด๋กœ๋งŒ ๋‹ต๋ณ€ํ•ด์ฃผ์„ธ์š”!!!")
        
        print( "Query: ", message)

    context = get_answers( message )

    sorted_answers = [
        f"{index}. ์งˆ๋ฌธ: {answer['questionDetails']}" + '\n' + f" ๋‹ต๋ณ€: {'. '.join(answer['answers'])} " + '\n'
        for (index, answer) in enumerate(context)
    ]

    document = '\n'.join(sorted_answers)
    return document

def get_perplexity_answer( message: str ):
    print(">>> Starting perplexity extraction...")
    messages = [
        {
            "role": "system",
            "content": (
                "You are an artificial intelligence assistant and you need to "
                "engage in a helpful, CONCISE, polite question-answer conversation with a user."
            ),
        },
        {   
            "role": "user",
            "content": (
                message
            ),
        },
    ]
    response = perplexity_client.chat.completions.create(
        model="llama-3.1-sonar-small-128k-online",
        messages=messages
    )
    return response.choices[0].message.content


def chatFunction( history ):
    # MAX_TOKEN_LIMIT = 58000
    start_time = time.time()
    message = history[-1][0]
    # content = f' ์งˆ๋ฌธ๊ณผ ๋‹ต๋ณ€์œผ๋กœ ๊ตฌ์„ฑ๋œ ๋ฌธ์„œ๋ฅผ ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค. \
    #             ์•„๋ž˜์— ์ œ๊ณต๋œ ์งˆ๋ฌธ์— ๋‹ตํ•˜๊ธฐ ์œ„ํ•ด ์ค‘์š”ํ•œ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜์„ธ์š”. \
    #             ํ•œ๊ตญ์–ด๋กœ๋งŒ ๋‹ต๋ณ€ํ•˜์„ธ์š”. ๊ตฌ์ฒด์ ์ด์ง€๋งŒ ๊ฐ„๊ฒฐํ•˜๊ฒŒ ์ž‘์„ฑํ•˜์„ธ์š”. \
    #             ์‹ค์ œ ๋ณดํ—˜์ƒ๋‹ด์‚ฌ๊ฐ€ ๋‹ต๋ณ€์„ ํ•˜๋“ฏ์ด ์นœ์ ˆํ•œ ๋‹ต๋ณ€์„ ํ•ด ์ฃผ์„ธ์š”. \n ์งˆ๋ฌธ: {message}\n ๋ฌธ์„œ: '
    
    content = f' ๋ณดํ—˜์„ค๊ณ„์‚ฌ๊ฐ€ ๋‹ต์„ ์ค˜์„œ, ๋” ๋งŽ์€ ์งˆ๋ฌธ์ด๋‚˜ ํ•ฉ๋‹นํ•œ ๋ณดํ—˜์— ๊ฐ€์ž…ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋‹ต๋ณ€์„ ํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. \
                ๋ฌธ์„œ์— ์žˆ๋Š” ์ œ3์ž ์–ธ๊ธ‰์„ 1์ธ์นญ์œผ๋กœ โ€‹โ€‹๋ฐ”๊พธ์„ธ์š”. ์˜ˆ๋ฅผ ๋“ค์–ด "KB์†ํ•ด๋ณดํ—˜ ์„ค๊ณ„์‚ฌ OOO์ž…๋‹ˆ๋‹ค" ๋“ฑ ์ œ3์ž๊ฐ€ ์–ธ๊ธ‰๋œ ๊ฒฝ์šฐ "๋ณดํ—˜๊ธฐ๊ด€์ž…๋‹ˆ๋‹ค"๋กœ ๋Œ€์ฒดํ•ฉ๋‹ˆ๋‹ค. \
                ์ด๋Ÿฌํ•œ ๋‹ต๋ณ€์„ ํ†ตํ•ด์„œ ์งˆ๋ฌธ์ž๊ฐ€ ์ด ๋‹ต๋ณ€์„ ๋ณด๊ณ  ๋ณดํ—˜์„ค๊ณ„์‚ฌ์—๊ฒŒ ๋” ์‹ ๋ขฐ๋ฅผ ๊ฐ–๊ณ  ์ถ”๊ฐ€ ์งˆ๋ฌธ์ด ์žˆ์œผ๋ฉด ๋ฌผ์–ด๋ณผ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. \
                ์‹ค์ œ ๋ณดํ—˜์ƒ๋‹ด์‚ฌ๊ฐ€ ๋‹ต๋ณ€์„ ํ•˜๋“ฏ์ด ์นœ์ ˆํ•œ ๋‹ต๋ณ€์„ ํ•ด ์ฃผ์„ธ์š”. \n ์งˆ๋ฌธ: {message}\n ๋ฌธ์„œ: '
    naver_docs = get_naver_answers( message )
    print(len(naver_docs))

    # if len(naver_docs) > MAX_TOKEN_LIMIT:
    #     print("HERE")
    #     start_tmp = time.time()
    #     overlap = 200
    #     answers = []
    #     split_len = len(naver_docs) // ( ( len(naver_docs) - MAX_TOKEN_LIMIT ) // MAX_TOKEN_LIMIT + 2 ) + 1
    #     print(len(naver_docs) // split_len) 
    #     for i in range( len(naver_docs) // split_len ):
    #         print("HERE: ", i)
    #         if i == 0:
    #             split = naver_docs[:split_len]
    #         else:
    #             split = naver_docs[i * split_len - overlap: (i + 1) * split_len]
    #         answer, _ = get_qwen_small_answer(f"Summarize important points in a paragraph, given the information below, using only Korean language. Give me only the summary!!! \n {split}")
    #         answers.append(answer)
    #     print("Answers: ", answers)
    #     naver_docs = '\n'.join(answers)
    #     naver_time_taken += time.time() - start_tmp

    # print("Post chunking length: ", len(naver_docs) )
    content += "\n Naver ๋ฌธ์„œ: " + naver_docs
    

    ### Extracting from Perplexity ###

    perplexity_resp = get_perplexity_answer( message )
    content += "\n Perplexity ๋ฌธ์„œ: " + perplexity_resp

    print(">>> Starting Gemini summarization...")

    response = gemini_summarizer.generate_content( content, stream=True )

    history[-1][1] = ''
    ans = ""
    for chunk in response:
        ans += chunk.text.replace("*", "")
        yield ans.strip() + "\n"
        time.sleep(0.05)
    
    print("Finished Gemini summarization")
    print("Time taken: ", time.time() - start_time)

def set_user_response( message: str, history: list ):
    history.append( [message, None] )
    return '', history

### Server-side code ###

from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware

app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=['*'],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


@app.get("/")
async def root():
    return {"message": "Hello World"}

class Message(BaseModel):
    message: str

@app.post("/chat")
async def chat( message: Message ):
    history = [[message.message, None]]
    return StreamingResponse(
        chatFunction(history),
        media_type='text/event-stream'
    )