Spaces:
Build error
Build error
File size: 11,838 Bytes
6efe9ab 18ab634 6efe9ab 29dea46 6efe9ab 4261f10 6efe9ab 4261f10 6efe9ab 4261f10 6efe9ab 4261f10 6efe9ab 4261f10 6efe9ab 4261f10 6efe9ab 58f2f43 6efe9ab 4e17f08 6efe9ab 4e17f08 6efe9ab 4e17f08 6efe9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import base64
import json
import os
import random
import re
import shutil
import sys
import tempfile
import uuid
import requests
from datetime import datetime
from io import BytesIO
from pathlib import Path
import gradio as gr
from PIL import Image
from dotenv import load_dotenv
from graphviz import Digraph
from huggingface_hub import InferenceClient
from together import Together
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# ENV / API
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN") # <-- add your HF token to .env
TOGETHER_TOKEN = os.getenv("TOGETHER_API_KEY", "")
together_client = Together(api_key=TOGETHER_TOKEN)
image_client = InferenceClient(token=HF_TOKEN) # default model set later
# Optional Graphviz path helper (Windows ONLY (RIP Gotham))
# if shutil.which("dot") is None:
# gv_path = r"C:\Program Files\Graphviz\bin"
# if os.path.exists(gv_path):
# os.environ["PATH"] = gv_path + os.pathsep + os.environ["PATH"]
# else:
# sys.exit("Graphviz not found. Please install Graphviz or remove the check.")
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# LLM templates
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
LLAMA_JSON_PROMPT = """
Extract every character and any explicit relationship between them.
Return pure JSON ONLY in this schema:
{
"characters": ["Alice", "Bob"],
"relations": [
{"from":"Alice","to":"Bob","type":"friend"}
]
}
TEXT:
\"\"\"%s\"\"\"
"""
IMAGE_PROMPT_TEMPLATE = """
Based on the following story, write %d distinct vivid scene descriptions, one per line.
Each line should begin with a dash (-) followed by a detailed image-worthy scene.
Include setting, mood, characters, and visual cues.
Return ONLY the list of scenes, each on its own line.
Story:
\"\"\"%s\"\"\"
"""
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# Entity extraction
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def extract_entities(text: str):
try:
prompt = LLAMA_JSON_PROMPT % text
resp = together_client.chat.completions.create(
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
messages=[{"role": "user", "content": prompt}],
max_tokens=1024,
)
raw = resp.choices[0].message.content.strip()
m = re.search(r"\{[\s\S]*\}", raw)
if not m:
return None, f"โ ๏ธย No JSON block found.\n\n{raw}"
data = json.loads(m.group(0))
return data, None
except Exception as e:
return None, f"โ ๏ธย extractor error: {e}"
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# Build visual prompt
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def generate_image_prompts(story_text: str, count=1):
try:
prompt_msg = IMAGE_PROMPT_TEMPLATE % (count, story_text)
resp = together_client.chat.completions.create(
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
messages=[{"role": "user", "content": prompt_msg}],
max_tokens=200,
)
raw_output = resp.choices[0].message.content.strip()
prompts = [line.strip("-โข ").strip() for line in raw_output.split("\n") if line.strip()]
return prompts[:count] # just in case LLM gives more than needed
except Exception as e:
print("โ ๏ธ LLM scene prompt generation failed:", e)
return []
def generate_images_with_together(story, style, quality, count=1):
base_prompt = generate_image_prompts(story)
images = []
for i in range(count):
full_prompt = f"{style} style, cinematic lighting, quality {quality}, {base_prompt} [Scene {i + 1}]"
seed = random.randint(1, 10_000_000)
try:
resp = together_client.images.generate(
model="black-forest-labs/FLUX.1-schnell-Free",
prompt=full_prompt,
seed=seed,
width=768,
height=512,
steps=4
)
except Exception as e:
print("๐ฅ Together image API error:", e)
break
img = None
if resp.data:
choice = resp.data[0]
if getattr(choice, "url", None):
try:
img_bytes = requests.get(choice.url, timeout=30).content
img = Image.open(BytesIO(img_bytes))
except Exception as e:
print("โ ๏ธย URL fetch failed:", e)
elif getattr(choice, "b64_json", None):
try:
img_bytes = base64.b64decode(choice.b64_json)
img = Image.open(BytesIO(img_bytes))
except Exception as e:
print("โ ๏ธย base64 decode failed:", e)
if img is not None:
images.append(img)
else:
print(f"โ ๏ธย No image for scene {i+1}")
return images
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# Graph โ PNG (Graphviz)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def build_graph_png(data: dict) -> str:
dot = Digraph(format="png")
dot.attr(rankdir="LR", bgcolor="white", fontsize="11")
for c in data["characters"]:
dot.node(c, shape="ellipse", style="filled", fillcolor="#8ecae6")
for r in data["relations"]:
dot.edge(r["from"], r["to"], label=r["type"], fontsize="10")
tmpdir = Path(tempfile.mkdtemp())
path = tmpdir / f"graph_{uuid.uuid4().hex}.png"
dot.render(path.stem, directory=tmpdir, cleanup=True)
return str(path)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# Core generation
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def generate_assets(prompt, style, quality, num_images, state):
data, err = extract_entities(prompt)
if not data:
return [], None, err or "No data.", state
graph_path = build_graph_png(data)
images = []
if num_images > 0:
try:
images = generate_images_with_together(prompt, style, quality, int(num_images))
except Exception as e:
status = f"โ ๏ธ Image generation failed: {e}"
return [], graph_path, status, data
status = "โ
All assets generated." if images else "โ
Graph generated (no images)."
return images, graph_path, status, data
# Helper to rebuild graph after manual edits
def _regen_graph(state): return gr.update(value=build_graph_png(state))
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# Manual tweak callbacks
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def add_character(name, state):
if not name:
return gr.update(), "Enter a character name.", state
if name in state["characters"]:
return gr.update(), f"{name} already exists.", state
state["characters"].append(name)
return _regen_graph(state), "โ
ย Character added.", state
def add_relation(frm, to, typ, state):
if frm not in state["characters"] or to not in state["characters"]:
return gr.update(), "Both characters must exist first.", state
state["relations"].append({"from": frm, "to": to, "type": typ or "relation"})
return _regen_graph(state), "โ
ย Relation added.", state
def delete_character(name, state):
if name not in state["characters"]:
return gr.update(), "Character not found.", state
state["characters"].remove(name)
state["relations"] = [r for r in state["relations"] if r["from"] != name and r["to"] != name]
return _regen_graph(state), f"๐ฎย {name} deleted.", state
# Save / Load
def save_json(state):
fp = Path(tempfile.gettempdir()) / f"story_{datetime.now().isoformat()}.json"
fp.write_text(json.dumps(state, indent=2))
return str(fp)
def load_json(file_obj, state):
if not file_obj or not Path(file_obj).exists():
return gr.update(), "No file uploaded.", state
try:
data = json.loads(Path(file_obj).read_text())
assert "characters" in data and "relations" in data
return _regen_graph(data), "โ
ย File loaded.", data
except Exception as e:
return gr.update(), f"Load error: {e}", state
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# UI (same tabs you designed)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan")) as demo:
gr.Markdown("## โจ EpicFrame โ Narrative Workbench")
state = gr.State({"characters": [], "relations": []})
# Input tab
with gr.Tab("Input"):
text_input = gr.Textbox(label="Story prompt", lines=6)
style_dropdown = gr.Dropdown(["Realistic", "Anime", "Sketch"], value="Realistic", label="Style")
quality_slider = gr.Slider(1, 10, value=7, step=1, label="Image Quality")
num_images_sl = gr.Slider(0, 4, value=0, step=1, label="Images to generate (0 = skip)")
generate_btn = gr.Button("โถ๏ธ Generate Assets")
status_box = gr.Textbox(label="Status", lines=2)
# Images tab
with gr.Tab("Images"):
gallery = gr.Gallery(label="๐ผ๏ธ Images", columns=4)
# Graph/Edit tab
with gr.Tab("Graph / Edit"):
graph_img = gr.Image(label="๐ Character Map", interactive=False, height=500)
with gr.Row():
add_char_name = gr.Textbox(label="Add Character โ Name")
add_char_btn = gr.Button("Add")
with gr.Row():
rel_from = gr.Textbox(label="Relation From")
rel_to = gr.Textbox(label="To")
rel_type = gr.Textbox(label="Type")
add_rel_btn = gr.Button("Add Relation")
with gr.Row():
del_char_name = gr.Textbox(label="Delete Character โ Name")
del_char_btn = gr.Button("Delete")
tweak_msg = gr.Textbox(label="โฐ Status", max_lines=2)
# Save/Load tab
with gr.Tab("Save / Load"):
save_btn = gr.Button("๐พ Download JSON")
load_file = gr.File(label="Load JSON")
load_btn = gr.Button("โคต๏ธ Load into workspace")
save_msg = gr.Textbox(label="Status", max_lines=2)
# callbacks
generate_btn.click(
generate_assets,
inputs=[text_input, style_dropdown, quality_slider, num_images_sl, state],
outputs=[gallery, graph_img, status_box, state]
)
add_char_btn.click(add_character,
inputs=[add_char_name, state],
outputs=[graph_img, tweak_msg, state])
add_rel_btn.click(add_relation,
inputs=[rel_from, rel_to, rel_type, state],
outputs=[graph_img, tweak_msg, state])
del_char_btn.click(delete_character,
inputs=[del_char_name, state],
outputs=[graph_img, tweak_msg, state])
save_btn.click(save_json, inputs=state, outputs=save_btn, api_name="download") \
.then(lambda p: "โ
JSON ready.", outputs=save_msg)
load_btn.click(load_json, inputs=[load_file, state],
outputs=[graph_img, save_msg, state])
demo.launch()
|