import albumentations as A import cv2 import torch from albumentations.pytorch import ToTensorV2 # from utils import seed_everything DATASET = 'PASCAL_VOC' DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # seed_everything() # If you want deterministic behavior NUM_WORKERS = 8 BATCH_SIZE = 32 IMAGE_SIZE = 416 NUM_CLASSES = 20 LEARNING_RATE = 3e-5 WEIGHT_DECAY = 3e-5 NUM_EPOCHS = 150 CONF_THRESHOLD = 0.5 MAP_IOU_THRESH = 0.5 NMS_IOU_THRESH = 0.45 S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8] PIN_MEMORY = True LOAD_MODEL = False SAVE_MODEL = True IMG_DIR = DATASET + "/images/" LABEL_DIR = DATASET + "/labels/" DISTILL = True DISTILL_FEATURES = True DISTILL_LOGITS = True BASE_CLASS = 19 NEW_CLASS = 1 BASE = False # CHECKPOINT_FILE = f'my_checkpoint_{BASE_CLASS}.pth.tar' CHECKPOINT_FILE = "/kaggle/input/yolov3-weight/2007_task2_19_1_mAP_19_1.pth.tar" #FINETUNE FINETUNE = True BATCH_SIZE_FINETUNE = 4 FINETUNE_NUM_IMAGE_PER_STORE = -1 #WARP WARP = True TRAIN_WARP = False TRAIN_WARP_AT_ITR_NO = 3 # WARP_LAYERS = ('layers.15.pred.1.conv.weight', 'layers.22.pred.1.conv.weight', 'layers.29.pred.1.conv.weight') WARP_LAYERS = ('layers.22.pred.1.conv.weight') # WARP_LAYERS = () # WARP_LAYERS = ('layers.15.pred.1.conv.weight', 'layers.29.pred.1.conv.weight') NUM_FEATURES_PER_CLASS = 3 NUM_IMAGES_PER_CLASS = 10 BATCH_SIZE_WARP = 8 USE_FEATURE_STORE = False IMAGE_STORE_LOC = '/kaggle/input/yolov3-weight/' MOSAIC = True ADD_IMAGE_STORE = True BASE_CHECK_POINT = "/kaggle/input/yolov3-weight/2007_base_19_1_mAP_19_1.pth.tar" ANCHORS = [ [(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)], [(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)], [(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)], ] # Note these have been rescaled to be between [0, 1] scale = 1.1 def train_preprocess(height = IMAGE_SIZE, width = IMAGE_SIZE): max_size = max(height, width) return A.Compose( [ A.LongestMaxSize(max_size=int(max_size * scale)), A.PadIfNeeded( min_height=int(height * scale), min_width=int(width * scale), border_mode=cv2.BORDER_CONSTANT, ), A.RandomCrop(width=width, height=height), A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4), A.OneOf( [ A.ShiftScaleRotate( rotate_limit=10, p=0.4, border_mode=cv2.BORDER_CONSTANT ), A.IAAAffine(shear=10, p=0.4, mode="constant"), ], p=1.0, ), A.HorizontalFlip(p=0.5), A.Blur(p=0.1), A.CLAHE(p=0.1), A.Posterize(p=0.1), A.ToGray(p=0.1), A.ChannelShuffle(p=0.05), # A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,), # ToTensorV2(), ], bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[],), ) train_transforms = A.Compose( [ A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,), ToTensorV2(), ], bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[],), ) def weak_preprocessing(height = IMAGE_SIZE, width = IMAGE_SIZE): max_size = max(height, width) return A.Compose( [ A.LongestMaxSize(max_size=int(max_size * scale)), A.PadIfNeeded( min_height=int(height * scale), min_width=int(width * scale), border_mode=cv2.BORDER_CONSTANT, ), A.RandomCrop(width=width, height=height), A.HorizontalFlip(p=0.5), A.Blur(p=0.1), ], bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[],), ) test_transforms = A.Compose( [ A.LongestMaxSize(max_size=IMAGE_SIZE), A.PadIfNeeded( min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT ), A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,), ToTensorV2(), ], bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[]), ) infer_transforms = A.Compose( [ A.LongestMaxSize(max_size=IMAGE_SIZE), A.PadIfNeeded( min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT ), A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,), ToTensorV2(), ] ) PASCAL_CLASSES = [ "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor" ] COCO_LABELS = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ]