File size: 5,805 Bytes
af0d38a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import albumentations as A
import cv2
import torch

from albumentations.pytorch import ToTensorV2
# from utils import seed_everything

DATASET = 'PASCAL_VOC'
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# seed_everything()  # If you want deterministic behavior
NUM_WORKERS = 8
BATCH_SIZE = 32
IMAGE_SIZE = 416
NUM_CLASSES = 20
LEARNING_RATE = 3e-5
WEIGHT_DECAY = 3e-5
NUM_EPOCHS = 150
CONF_THRESHOLD = 0.5
MAP_IOU_THRESH = 0.5
NMS_IOU_THRESH = 0.45
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
PIN_MEMORY = True
LOAD_MODEL = False
SAVE_MODEL = True

IMG_DIR = DATASET + "/images/"
LABEL_DIR = DATASET + "/labels/"
DISTILL = True
DISTILL_FEATURES = True
DISTILL_LOGITS = True
BASE_CLASS = 19
NEW_CLASS = 1
BASE = False

# CHECKPOINT_FILE = f'my_checkpoint_{BASE_CLASS}.pth.tar'
CHECKPOINT_FILE = "/kaggle/input/yolov3-weight/2007_task2_19_1_mAP_19_1.pth.tar"

#FINETUNE
FINETUNE = True
BATCH_SIZE_FINETUNE = 4
FINETUNE_NUM_IMAGE_PER_STORE = -1

#WARP 
WARP = True
TRAIN_WARP = False 
TRAIN_WARP_AT_ITR_NO = 3
# WARP_LAYERS = ('layers.15.pred.1.conv.weight', 'layers.22.pred.1.conv.weight', 'layers.29.pred.1.conv.weight')
WARP_LAYERS = ('layers.22.pred.1.conv.weight')
# WARP_LAYERS = ()
# WARP_LAYERS = ('layers.15.pred.1.conv.weight', 'layers.29.pred.1.conv.weight')
NUM_FEATURES_PER_CLASS = 3
NUM_IMAGES_PER_CLASS = 10
BATCH_SIZE_WARP = 8
USE_FEATURE_STORE = False
IMAGE_STORE_LOC = '/kaggle/input/yolov3-weight/'
MOSAIC = True
ADD_IMAGE_STORE = True


BASE_CHECK_POINT = "/kaggle/input/yolov3-weight/2007_base_19_1_mAP_19_1.pth.tar"
ANCHORS = [
    [(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
    [(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
    [(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
]  # Note these have been rescaled to be between [0, 1]


scale = 1.1
def train_preprocess(height = IMAGE_SIZE, width = IMAGE_SIZE):
    max_size = max(height, width)
    return A.Compose(
        [
            A.LongestMaxSize(max_size=int(max_size * scale)),
            A.PadIfNeeded(
                min_height=int(height * scale),
                min_width=int(width * scale),
                border_mode=cv2.BORDER_CONSTANT,
            ),
            A.RandomCrop(width=width, height=height),
            A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4),
            A.OneOf(
                [
                    A.ShiftScaleRotate(
                        rotate_limit=10, p=0.4, border_mode=cv2.BORDER_CONSTANT
                    ),
                    A.IAAAffine(shear=10, p=0.4, mode="constant"),
                ],
                p=1.0,
            ),
            A.HorizontalFlip(p=0.5),
            A.Blur(p=0.1),
            A.CLAHE(p=0.1),
            A.Posterize(p=0.1),
            A.ToGray(p=0.1),
            A.ChannelShuffle(p=0.05),
            # A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
            # ToTensorV2(),
        ],
        bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[],),
    )


train_transforms = A.Compose(
    [
        A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
        ToTensorV2(),
    ],
    bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[],),
)

def weak_preprocessing(height = IMAGE_SIZE, width = IMAGE_SIZE):
    max_size = max(height, width)
    return A.Compose(
            [
            A.LongestMaxSize(max_size=int(max_size * scale)),
            A.PadIfNeeded(
                min_height=int(height * scale),
                min_width=int(width * scale),
                border_mode=cv2.BORDER_CONSTANT,
            ),
            A.RandomCrop(width=width, height=height),
            A.HorizontalFlip(p=0.5),
            A.Blur(p=0.1),
            ],
        bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[],),
    )


test_transforms = A.Compose(
    [
        A.LongestMaxSize(max_size=IMAGE_SIZE),
        A.PadIfNeeded(
            min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
        ),
        A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
        ToTensorV2(),
    ],
    bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[]),
)

infer_transforms = A.Compose(
    [
        A.LongestMaxSize(max_size=IMAGE_SIZE),
        A.PadIfNeeded(
            min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
        ),
        A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
        ToTensorV2(),
    ]
)

PASCAL_CLASSES = [
    "aeroplane",
    "bicycle",
    "bird",
    "boat",
    "bottle",
    "bus",
    "car",
    "cat",
    "chair",
    "cow",
    "diningtable",
    "dog",
    "horse",
    "motorbike",
    "person",
    "pottedplant",
    "sheep",
    "sofa",
    "train",
    "tvmonitor"
]

COCO_LABELS = ['person',
 'bicycle',
 'car',
 'motorcycle',
 'airplane',
 'bus',
 'train',
 'truck',
 'boat',
 'traffic light',
 'fire hydrant',
 'stop sign',
 'parking meter',
 'bench',
 'bird',
 'cat',
 'dog',
 'horse',
 'sheep',
 'cow',
 'elephant',
 'bear',
 'zebra',
 'giraffe',
 'backpack',
 'umbrella',
 'handbag',
 'tie',
 'suitcase',
 'frisbee',
 'skis',
 'snowboard',
 'sports ball',
 'kite',
 'baseball bat',
 'baseball glove',
 'skateboard',
 'surfboard',
 'tennis racket',
 'bottle',
 'wine glass',
 'cup',
 'fork',
 'knife',
 'spoon',
 'bowl',
 'banana',
 'apple',
 'sandwich',
 'orange',
 'broccoli',
 'carrot',
 'hot dog',
 'pizza',
 'donut',
 'cake',
 'chair',
 'couch',
 'potted plant',
 'bed',
 'dining table',
 'toilet',
 'tv',
 'laptop',
 'mouse',
 'remote',
 'keyboard',
 'cell phone',
 'microwave',
 'oven',
 'toaster',
 'sink',
 'refrigerator',
 'book',
 'clock',
 'vase',
 'scissors',
 'teddy bear',
 'hair drier',
 'toothbrush'
]