File size: 14,812 Bytes
8d4bf19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a2cd7
 
8d4bf19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a2cd7
525e1e1
 
 
 
 
 
 
 
 
2fa5504
525e1e1
 
bf1fde7
525e1e1
 
 
 
 
2fa5504
525e1e1
 
bf1fde7
525e1e1
 
 
 
2fa5504
525e1e1
 
 
 
 
 
bf1fde7
 
 
525e1e1
 
eb1abd7
525e1e1
eb1abd7
525e1e1
eb1abd7
525e1e1
eb1abd7
8d4bf19
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import streamlit as st
# import config
import albumentations as A
from albumentations.pytorch import ToTensorV2
import torch
import numpy as np
import math
from PIL import Image
# import wandb
from model import YOLOv3
import cv2

IMAGE_SIZE = 416
ANCHORS = [
    [(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
    [(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
    [(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
]  
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]

infer_transforms = A.Compose(
    [
        A.LongestMaxSize(max_size=IMAGE_SIZE),
        A.PadIfNeeded(
            min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
        ),
        A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
        ToTensorV2(),
    ]
)

def cells_to_bboxes(predictions, anchors, S, is_preds=True):
    """
    Scales the predictions coming from the model to
    be relative to the entire image such that they for example later
    can be plotted or.
    INPUT:
    predictions: tensor of size (N, 3, S, S, num_classes+5)
    anchors: the anchors used for the predictions
    S: the number of cells the image is divided in on the width (and height)
    is_preds: whether the input is predictions or the true bounding boxes
    OUTPUT:
    converted_bboxes: the converted boxes of sizes (N, num_anchors, S, S, 1+5) with class index,
                      object score, bounding box coordinates
    """
    BATCH_SIZE = predictions.shape[0]
    num_anchors = len(anchors)
    box_predictions = predictions[..., 1:5]
    if is_preds:
        anchors = anchors.reshape(1, len(anchors), 1, 1, 2)
        box_predictions[..., 0:2] = torch.sigmoid(box_predictions[..., 0:2])
        box_predictions[..., 2:] = torch.exp(box_predictions[..., 2:]) * anchors
        scores = torch.sigmoid(predictions[..., 0:1])
        best_class = torch.argmax(predictions[..., 5:], dim=-1).unsqueeze(-1)
    else:
        scores = predictions[..., 0:1]
        best_class = predictions[..., 5:6]

    cell_indices = (
        torch.arange(S)
        .repeat(predictions.shape[0], 3, S, 1)
        .unsqueeze(-1)
        .to(predictions.device)
    )
    x = 1 / S * (box_predictions[..., 0:1] + cell_indices)
    y = 1 / S * (box_predictions[..., 1:2] + cell_indices.permute(0, 1, 3, 2, 4))
    w_h = 1 / S * box_predictions[..., 2:4]
    converted_bboxes = torch.cat((best_class, scores, x, y, w_h), dim=-1).reshape(BATCH_SIZE, num_anchors * S * S, 6)
    return converted_bboxes.tolist()

def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"):
    """
    Video explanation of this function:
    https://youtu.be/YDkjWEN8jNA

    Does Non Max Suppression given bboxes

    Parameters:
        bboxes (list): list of lists containing all bboxes with each bboxes
        specified as [class_pred, prob_score, x1, y1, x2, y2]
        iou_threshold (float): threshold where predicted bboxes is correct
        threshold (float): threshold to remove predicted bboxes (independent of IoU)
        box_format (str): "midpoint" or "corners" used to specify bboxes

    Returns:
        list: bboxes after performing NMS given a specific IoU threshold
    """

    assert type(bboxes) == list

    bboxes = [box for box in bboxes if box[1] > threshold]
    bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
    bboxes_after_nms = []

    while bboxes:
        chosen_box = bboxes.pop(0)

        bboxes = [
            box
            for box in bboxes
            if box[0] != chosen_box[0]
            or intersection_over_union(
                torch.tensor(chosen_box[2:]),
                torch.tensor(box[2:]),
                box_format=box_format,
            )
            < iou_threshold
        ]

        bboxes_after_nms.append(chosen_box)

    return bboxes_after_nms

def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint", GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
    """
    Video explanation of this function:
    https://youtu.be/XXYG5ZWtjj0

    This function calculates intersection over union (iou) given pred boxes
    and target boxes.

    Parameters:
        boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
        boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
        box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)

    Returns:
        tensor: Intersection over union for all examples
    """

    if box_format == "midpoint":
        box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2
        box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2
        box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2
        box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2
        box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2
        box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2
        box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2
        box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2
        w1 = boxes_preds[..., 2:3]
        h1 = boxes_preds[..., 3:4]
        w2 = boxes_labels[..., 2:3]
        h2 = boxes_labels[..., 3:4]
    if box_format == "corners":
        box1_x1 = boxes_preds[..., 0:1]
        box1_y1 = boxes_preds[..., 1:2]
        box1_x2 = boxes_preds[..., 2:3]
        box1_y2 = boxes_preds[..., 3:4]
        box2_x1 = boxes_labels[..., 0:1]
        box2_y1 = boxes_labels[..., 1:2]
        box2_x2 = boxes_labels[..., 2:3]
        box2_y2 = boxes_labels[..., 3:4]

    x1 = torch.max(box1_x1, box2_x1)
    y1 = torch.max(box1_y1, box2_y1)
    x2 = torch.min(box1_x2, box2_x2)
    y2 = torch.min(box1_y2, box2_y2)

    intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
    box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1))
    box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1))
    iou = intersection / (box1_area + box2_area - intersection)
    if CIoU or DIoU or GIoU:
        cw = box1_x2.maximum(box2_x2) - box1_x1.minimum(box2_x1)  # convex (smallest enclosing box) width
        ch = box1_y2.maximum(box2_y2) - box1_y1.minimum(box2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
            rho2 = ((box2_x1 + box2_x2 - box1_x1 - box1_x2) ** 2 + (box2_y1 + box2_y2 - box1_y1 - box1_y2) ** 2) / 4  # center dist ** 2
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
                with torch.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
            return iou - rho2 / c2  # DIoU
        c_area = cw * ch + eps  # convex area
        return iou - (c_area - intersection) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    return intersection / (box1_area + box2_area - intersection + 1e-6)

def resize_box(box, origin_dims, in_dims):
    # amount of padding
    h_ori, w_ori = origin_dims[0], origin_dims[1]
    print(h_ori, w_ori)
    padding_height = max(w_ori - h_ori, 0) * in_dims/w_ori
    padding_width =  max(h_ori - w_ori, 0) * in_dims/h_ori    
    
    #picture size after remove pad
    h_new = in_dims - padding_height
    w_new = in_dims - padding_width
    
    # resize box
    box[0] = (box[0] - padding_width//2)* w_ori/w_new
    box[1] = (box[1] - padding_height//2)* h_ori/h_new
    box[2] = (box[2] - padding_width//2)* w_ori/w_new
    box[3] = (box[3] - padding_height//2)* h_ori/h_new
    
    return box

def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
    # Rescale boxes (xyxy) from img1_shape to img0_shape
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    boxes[..., [0, 2]] -= pad[0]  # x padding
    boxes[..., [1, 3]] -= pad[1]  # y padding
    boxes[..., :4] /= gain
    clip_boxes(boxes, img0_shape)
    return boxes

def clip_boxes(boxes, shape):
    # Clip boxes (xyxy) to image shape (height, width)
    if isinstance(boxes, torch.Tensor):  # faster individually
        boxes[..., 0].clamp_(0, shape[1])  # x1
        boxes[..., 1].clamp_(0, shape[0])  # y1
        boxes[..., 2].clamp_(0, shape[1])  # x2
        boxes[..., 3].clamp_(0, shape[0])  # y2
    else:  # np.array (faster grouped)
        boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
        boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2


def plot_image(image, boxes, image_ori=None):
    import pickle as pkl
    """Plots predicted bounding boxes on the image"""
    # cmap = plt.get_cmap("tab20b")
    class_labels = [
    "aeroplane",
    "bicycle",
    "bird",
    "boat",
    "bottle",
    "bus",
    "car",
    "cat",
    "chair",
    "cow",
    "diningtable",
    "dog",
    "horse",
    "motorbike",
    "person",
    "pottedplant",
    "sheep",
    "sofa",
    "train",
    "tvmonitor"
    ]
    colors = pkl.load(open("pallete", "rb"))
    im = np.array(image)
    height, width, _ = im.shape

    # Draw bounding boxes on the image
    for box in boxes:
        assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
        class_pred = box[0]
        conf = box[1]
        box = box[2:]
        box_clone = box.copy()
        box[0] = max(box_clone[0] - box_clone[2] / 2, 0.) * width
        box[1] = max(box_clone[1] - box_clone[3] / 2, 0.) * height
        box[2] = min(box_clone[0] + box_clone[2] / 2, 1.) * width
        box[3] = min(box_clone[1] + box_clone[3] / 2, 1.) * height
        box = scale_boxes((height, width), torch.tensor(box), image_ori.shape[:2])
        h_o, w_o, _ = image_ori.shape
        color = colors[int(class_pred)]
        # print(color)

        # Draw rectangle
        cv2.rectangle(image_ori, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), color, 2)
        label = class_labels[int(class_pred)]
        text = f"{label}: {conf:.2f}"
        cv2.putText(image_ori, text, (int(box[0]), int(box[1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)

    return image_ori
    # cv2.imwrite("test.png", image_ori)

def infer(model, img, thresh, iou_thresh, anchors):
    model.eval()
    image = np.array(img)
    image = image[:, :, :3]
    # print(image.shape)
    image_copy = image.copy()
    # image = image[np.newaxis, :]
    augmentations = infer_transforms(image=image)
    x = augmentations["image"]
    # x = x.to("cuda")
    x = torch.reshape(x, [1,3,416,416])
    # print(x.shape)
    with torch.no_grad():
        out = model(x)
        bboxes = [[] for _ in range(x.shape[0])]
        for i in range(3):
            batch_size, A, S, _, _ = out[i].shape
            anchor = anchors[i]
            boxes_scale_i = cells_to_bboxes(
                out[i], anchor, S=S, is_preds=True
            )
            for idx, (box) in enumerate(boxes_scale_i):
                bboxes[idx] += box
    
    for i in range(batch_size):
        nms_boxes = non_max_suppression(
            bboxes[i], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint",
        )
        img = plot_image(x[i].permute(1,2,0).detach().cpu(), nms_boxes, image_copy)
    return img

scene = st.radio(
    "Chọn bối cảnh",
    ('19->20', '15->20', '10->20'))
# scene = '19->20'

# task = st.radio(
#     "Chọn nhiệm vụ",
#     ('task1', 'task2', 'finetune'))

all = 20

if scene == '19->20':
    base = 19
    new = all - base
elif scene == '15->20':
    base = 15
    new = all - base
else:
    base = 10
    new = all - base

# if task == '1.Nhiệm vụ 1':
#     cls = base
#     task = 'task1'
# elif task == '2. Nhiệm vụ 2 (trước tinh chỉnh)':
#     cls = all
#     tune = False
# else:
#     cls = all
#     tune = True

device = "cuda"
if not torch.cuda.is_available():
    device = "cpu"

scaled_anchors = (
        torch.tensor(ANCHORS)
        * torch.tensor(S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
    ).to(device)


uploaded_file = st.file_uploader("Chọn hình ảnh...", type=["jpg", "jpeg", "png"])
# uploaded_file = '/home/ngocanh/Documents/final_thesis/code/dataset/10_10/base/images/test/000011.jpg'
if uploaded_file is not None:
    image = Image.open(uploaded_file)
    print("Thuc hien bien doi")
    
    #task 1
    file_path = f"2007_base_{base}_{new}_mAP_{base}_{new}.pth.tar"
    model = YOLOv3(num_classes=base).to(device)
    checkpoint = torch.load(file_path, map_location=device)
    model.load_state_dict(checkpoint["state_dict"])
    model.eval()
    image_1 = infer(model, image, 0.7, 0.8, scaled_anchors)
    
    #task 2
    image = Image.open(uploaded_file)
    file_path = f"2007_task2_{base}_{new}_mAP_{base}_{new}.pth.tar"
    model = YOLOv3(num_classes=all).to(device)
    checkpoint = torch.load(file_path, map_location=device)
    model.load_state_dict(checkpoint["state_dict"])
    model.eval()
    image_2 = infer(model, image, 0.7, 0.8, scaled_anchors)
    
    #ft
    image = Image.open(uploaded_file)
    file_path = f"2007_finetune_{base}_{new}_mAP_{base}_{new}.pth.tar"
    checkpoint = torch.load(file_path, map_location=device)
    model.load_state_dict(checkpoint["state_dict"])
    model.eval()
    image_3 = infer(model, image, 0.7, 0.8, scaled_anchors)
    # Streamlit App
    # Widget tải lên file ảnh
    
    # note = Image.open("note.png")
    # st.image(note, width=150)
    
    image_1 = cv2.cvtColor(image_1, cv2.COLOR_BGR2RGB)
    image_2 = cv2.cvtColor(image_2, cv2.COLOR_BGR2RGB)
    image_3 = cv2.cvtColor(image_3, cv2.COLOR_BGR2RGB)
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        st.image(image, caption="Ảnh đầu vào")
    with col2:
        st.image(image_1, caption="Kết quả task 1", channels="BGR")
    with col3:
        st.image(image_2, caption="Kết quả task 2 (no finetune)", channels="BGR")
    with col4:
        st.image(image_3, caption="Kết quả task 2 (finetune)", channels="BGR")


# import cv2
# image_1 = cv2.cvtColor(image_1, cv2.COLOR_BGR2RGB)
# cv2.imwrite('test.jpg',image_1)

    # Hiển thị ảnh gốc

    # TODO: Đưa ảnh qua mô hình để xử lý (đoán, biến đổi, ...)

    # Hiển thị kết quả (ảnh sau khi qua mô hình), nếu có

    # Ví dụ: Nếu bạn đã có kết quả từ mô hình (processed_img) là một PIL Image
    # st.image(processed_img, caption="Processed Image", use_column_width=True)