File size: 16,475 Bytes
fd8cfee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65aa9c4
fd8cfee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# app_final.py (final debugged version)
import streamlit as st
import requests
import yfinance as yf
import pandas as pd
import numpy as np
import os
from datetime import datetime, timedelta
import joblib
import re
import time
import cloudpickle

# ---------------------------- CONFIG ----------------------------
HF_API_TOKEN = st.secrets["HF_API_TOKEN"]
CRYPTO_NEWS_API_KEY = st.secrets["CRYPTO_NEWS_API_KEY"]
FRED_API_KEY = st.secrets["FRED_API_KEY"]

FINBERT_API = "https://api-inference.huggingface.co/models/ProsusAI/finbert"
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}

TICKERS = {
    "bitcoin": "BTC-USD",
    "gold": "GC=F",
    "sp500": "^GSPC",
    "dxy": "DX-Y.NYB"
}

FRED_CODES = {
    "interest_rate": "FEDFUNDS",
    "inflation": "CPIAUCSL"
}
# Load model using cloudpickle
with open("histgb_pca_model_clean.pkl", "rb") as f:
    model = cloudpickle.load(f)

pca = joblib.load("pca.pkl")
scaler = joblib.load("scaler.pkl")

# ---------------------------- FUNCTIONS ----------------------------
def fetch_news(source):
    url = f"https://cryptonews-api.com/api/v1/category"
    params = {
        "section": "general",
        "items": 10,
        "page": 1,
        "source": source,
        "token": CRYPTO_NEWS_API_KEY
    }
    r = requests.get(url, params=params)
    articles = r.json().get("data", [])
    texts = []
    for art in articles:
        summary = art.get("text") or art.get("content", "").split(".")[0]
        texts.append(summary)
    return texts

def call_finbert(news_list):
    results_df = []
    news_list = news_list[:5]
    for idx, news in enumerate(news_list):
        if not isinstance(news, str) or not news.strip():
            results_df.append({"positive": 0.0, "neutral": 0.0, "negative": 0.0})
            continue
        payload = {"inputs": news}
        for attempt in range(5):
            try:
                response = requests.post(FINBERT_API, headers=HEADERS, json=payload, timeout=30)
                response.raise_for_status()
                output = response.json()
                
                # Get raw scores
                scores_raw = {item["label"].lower(): item["score"] for item in output[0]}
                
                # Ensure fixed column order
                aligned_scores = {
                    "positive": scores_raw.get("positive", 0.0),
                    "neutral": scores_raw.get("neutral", 0.0),
                    "negative": scores_raw.get("negative", 0.0)
                }
                
                results_df.append(aligned_scores)
                break
            except requests.exceptions.RequestException as e:
                st.warning(f"โš ๏ธ FinBERT error on article {idx+1}, attempt {attempt+1}/5: {e}")
                time.sleep(2)
            except Exception as ex:
                st.warning(f"โŒ Failed to analyze article {idx+1}: {ex}")
                results_df.append({"positive": 0.0, "neutral": 0.0, "negative": 0.0})
                break
    return pd.DataFrame(results_df)

def aggregate_sentiments(sentiment_df):
    scaled = sentiment_df.copy()
    for col in scaled.columns:
        scaled[col] = (scaled[col] - scaled[col].min()) / (scaled[col].max() - scaled[col].min() + 1e-8)
    weighted = scaled.copy()
    for col in ["positive", "negative"]:
        weighted[col] = np.where(scaled[col] > 0.75, scaled[col] * 1.5, scaled[col])
        weighted[col] = np.clip(weighted[col], 0, 1)
    weighted["neutral"] = scaled["neutral"]
    return weighted.mean().to_dict(), (scaled > 0.75).sum().to_dict()

def fetch_yahoo_data(ticker, date):
    data = yf.Ticker(ticker).history(start=date, end=date + timedelta(days=1))
    if not data.empty:
        return {
            "open": round(data["Open"].iloc[0], 2),
            "high": round(data["High"].iloc[0], 2),
            "low": round(data["Low"].iloc[0], 2),
            "close": round(data["Close"].iloc[0], 2),
            "volume": int(data["Volume"].iloc[0]) if ticker != TICKERS["dxy"] else None,
            "change_pct": round(((data["Close"].iloc[0] - data["Open"].iloc[0]) / data["Open"].iloc[0]) * 100, 2)
        }
    else:
        st.warning(f"โš ๏ธ No trading data for {ticker} on {date.strftime('%Y-%m-%d')}, using previous available data.")
        return fetch_yahoo_data(ticker, date - timedelta(days=1))

def fetch_fred(code, month):
    url = f"https://api.stlouisfed.org/fred/series/observations"
    params = {
        "series_id": code,
        "observation_start": f"{month}-01",
        "api_key": FRED_API_KEY,
        "file_type": "json"
    }
    res = requests.get(url, params=params).json()
    try:
        return float(res["observations"][0]["value"])
    except:
        prev_month = (datetime.strptime(month, "%Y-%m") - timedelta(days=30)).strftime("%Y-%m")
        return fetch_fred(code, prev_month)

def make_prediction(input_data):
    expected_cols = list(scaler.feature_names_in_)

    # SAFETY CHECK
    if len(input_data) != len(expected_cols):
        raise ValueError(f"โŒ Input length mismatch! Got {len(input_data)}, expected {len(expected_cols)}")

    # Align input values to expected column order
    input_dict = dict(zip(expected_cols, input_data))
    input_df = pd.DataFrame([input_dict])[expected_cols]

    # DEBUG VIEW
    st.write("๐Ÿ“„ Aligned Input DataFrame:")
    st.dataframe(input_df)

    # Transform
    x_scaled = scaler.transform(input_df)
    x_pca = pca.transform(x_scaled)
    proba = model.predict_proba(x_pca)[0][1]
    prediction = "Increase" if proba >= 0.72 else "Decrease"
    return prediction, round(proba, 4)


import gspread
from oauth2client.service_account import ServiceAccountCredentials

def log_prediction(record):
    try:
        scope = ["https://spreadsheets.google.com/feeds",
                 "https://www.googleapis.com/auth/drive"]

        creds = ServiceAccountCredentials.from_json_keyfile_name("creds.json", scope)
        client = gspread.authorize(creds)

        sheet = client.open("BTC Predictions Log").sheet1  # Must match your actual Google Sheet name
        sheet.append_row(list(record.values()))
        st.success("โœ… Logged to Google Sheet successfully.")
    except Exception as e:
        st.warning(f"โš ๏ธ Logging to Google Sheets failed: {e}")

# ---------------------------- STREAMLIT UI ----------------------------
st.set_page_config(page_title="Next Day Bitcoin Price Movement", layout="wide")
st.title("๐Ÿ”ฎ Next Day Bitcoin Price Movement Predictor")

date = st.date_input("Select a date", datetime.today() - timedelta(days=1))
month = date.strftime("%Y-%m")

if "news_loaded" not in st.session_state:
    st.session_state.news_loaded = False

sentiment_features = []
aggregated_display = {}
news_by_source = {"CryptoNews": [], "CryptoPotato": []}
edited_news_by_source = {}

# ------------------------------------
# STEP 1: FETCH NEWS + ENABLE EDITING
# ------------------------------------
if not st.session_state.news_loaded:
    if st.button("๐Ÿ“ฅ Fetch News"):
        for src in ["CryptoNews", "CryptoPotato"]:
            try:
                news = fetch_news(src)
                news_by_source[src] = news
                st.session_state[src] = "\n\n".join(news)  # store for text_area default
            except Exception as e:
                st.warning(f"โš ๏ธ Could not fetch {src}: {e}")
                st.session_state[src] = ""
        st.session_state.news_loaded = True
        st.rerun()

# ------------------------------------
# STEP 2: SHOW TEXT BOXES + RUN PREDICTION
# ------------------------------------
if st.session_state.news_loaded:
    st.subheader("๐Ÿ“ Edit News Articles")
    for src in ["CryptoNews", "CryptoPotato"]:
        default_text = st.session_state.get(src, "")
        user_input = st.text_area(f"{src} Articles (5 max, one per paragraph)", default_text, height=300)
        edited_news_by_source[src] = [para.strip() for para in user_input.split("\n\n") if para.strip()]

    if st.button("๐Ÿ”ฎ Make Prediction"):
        for src in ["CryptoNews", "CryptoPotato"]:
            try:
                news_by_source[src] = edited_news_by_source[src]
                scores_df = call_finbert(news_by_source[src])
                st.write(f"๐Ÿ“Š FinBERT Scores for {src}:", scores_df)

                weighted_avg, extreme_count = aggregate_sentiments(scores_df)
                total_articles = len(scores_df)

                pct_scores = {
                    "positive_pct": extreme_count.get("positive", 0) / total_articles,
                    "neutral_pct": extreme_count.get("neutral", 0) / total_articles,
                    "negative_pct": extreme_count.get("negative", 0) / total_articles
                }

                sentiment_features.extend([
                    weighted_avg["positive"],
                    weighted_avg["neutral"],
                    weighted_avg["negative"],
                    pct_scores["positive_pct"],
                    pct_scores["neutral_pct"],
                    pct_scores["negative_pct"]
                ])
            except Exception as e:
                st.warning(f"โš ๏ธ Failed for {src}: {e}")
                sentiment_features.extend([0.0] * 6)
                news_by_source[src] = []

        st.markdown("**Aggregated Sentiment**")
        st.write("๐Ÿ”Ž News by Source:", news_by_source)
        sentiment_feature_labels = {
	    "cryptonews_positive_weighted": sentiment_features[0],
            "cryptonews_neutral_weighted": sentiment_features[1],
            "cryptonews_negative_weighted": sentiment_features[2],
            "cryptonews_positive_pct": sentiment_features[3],
            "cryptonews_neutral_pct": sentiment_features[4],
            "cryptonews_negative_pct": sentiment_features[5],
            "cryptopotato_positive_weighted": sentiment_features[6],
            "cryptopotato_neutral_weighted": sentiment_features[7],
            "cryptopotato_negative_weighted": sentiment_features[8],
            "cryptopotato_positive_pct": sentiment_features[9],
            "cryptopotato_neutral_pct": sentiment_features[10],
            "cryptopotato_negative_pct": sentiment_features[11],
        }
        st.markdown("### ๐Ÿง  Sentiment Features by Source")
        st.json(sentiment_feature_labels)	

        # Average across both sources
        if len(sentiment_features) == 12:
            aggregated_sentiments = [
                (sentiment_features[0] + sentiment_features[6]) / 2,
                (sentiment_features[1] + sentiment_features[7]) / 2,
                (sentiment_features[2] + sentiment_features[8]) / 2,
                (sentiment_features[3] + sentiment_features[9]) / 2,
                (sentiment_features[4] + sentiment_features[10]) / 2,
                (sentiment_features[5] + sentiment_features[11]) / 2
            ]
        elif len(sentiment_features) == 6:
            aggregated_sentiments = sentiment_features
        else:
            st.warning("โš ๏ธ Sentiment features incomplete. Defaulting to 0s.")
            aggregated_sentiments = [0.0] * 6

        # Fetch BTC + macro data
        st.subheader("๐Ÿ“ˆ Bitcoin Price Data")
        btc = fetch_yahoo_data(TICKERS["bitcoin"], date)
        st.json(btc)

        st.subheader("๐Ÿ“Š Macroeconomic Indicators")
        macro = {}
        for k, t in TICKERS.items():
            if k != "bitcoin":
                try:
                    macro[k] = fetch_yahoo_data(t, date)
                except Exception as e:
                    st.warning(f"โš ๏ธ Failed to fetch {k.upper()} data: {e}")
                    macro[k] = {"open": 0, "high": 0, "low": 0, "close": 0, "volume": 0, "change_pct": 0}
        st.json(macro)

        st.subheader("๐Ÿฉ Fed Indicators")
        fed = {
            "interest_rate": fetch_fred(FRED_CODES["interest_rate"], month),
            "inflation": fetch_fred(FRED_CODES["inflation"], month)
        }
        st.json(fed)

        # ========== BUILD FINAL INPUT DICT SAFELY ==========
        final_input_dict = {
            "S&P_500_Open": macro["sp500"].get("open", 0),
            "S&P_500_High": macro["sp500"].get("high", 0),
            "S&P_500_Low": macro["sp500"].get("low", 0),
            "S&P_500_Close": macro["sp500"].get("close", 0),
            "S&P_500_Volume": macro["sp500"].get("volume", 0),
            "S&P_500_%_Change": macro["sp500"].get("change_pct", 0),

            "Gold_Prices_Open": macro["gold"].get("open", 0),
            "Gold_Prices_High": macro["gold"].get("high", 0),
            "Gold_Prices_Low": macro["gold"].get("low", 0),
            "Gold_Prices_Close": macro["gold"].get("close", 0),
            "Gold_Prices_Volume": macro["gold"].get("volume", 0),
            "Gold_Prices_%_Change": macro["gold"].get("change_pct", 0),

            "US_Dollar_Index_DXY_Open": macro["dxy"].get("open", 0),
            "US_Dollar_Index_DXY_High": macro["dxy"].get("high", 0),
            "US_Dollar_Index_DXY_Low": macro["dxy"].get("low", 0),
            "US_Dollar_Index_DXY_Close": macro["dxy"].get("close", 0),
            "US_Dollar_Index_DXY_%_Change": macro["dxy"].get("change_pct", 0),

            "Federal_Reserve_Interest_Rates_FEDFUNDS": fed.get("interest_rate", 0),
            "Inflation_CPIAUCNS": fed.get("inflation", 0),

            "Open": btc.get("open", 0),
            "High": btc.get("high", 0),
            "Low": btc.get("low", 0),
            "Close": btc.get("close", 0),
            "Volume": btc.get("volume", 0),
            "Change %": btc.get("change_pct", 0),

            "positive_weighted": aggregated_sentiments[0],
            "neutral_weighted": aggregated_sentiments[1],
            "negative_weighted": aggregated_sentiments[2],
            "negative_pct": aggregated_sentiments[5],
            "neutral_pct": aggregated_sentiments[4],
            "positive_pct": aggregated_sentiments[3],
        }

        # ========== PREPARE & PREDICT ==========
        expected_cols = list(scaler.feature_names_in_)
        final_input = [final_input_dict[col] for col in expected_cols]

        if any(pd.isna(x) for x in final_input):
            st.error("โŒ Missing or invalid input data. Please check news, market, or macro feeds.")
        else:
            # Prepare aligned input
            input_df = pd.DataFrame([final_input_dict])[expected_cols]
            x_scaled = scaler.transform(input_df)
            x_pca = pca.transform(x_scaled)

            # Model prediction
            proba = model.predict_proba(x_pca)[0][1]
            prediction = "Increase" if proba >= 0.62 else "Decrease"

            # PCA features table
            pca_df = pd.DataFrame(x_pca, columns=[f"PC{i+1}" for i in range(x_pca.shape[1])])
            st.markdown("### ๐Ÿงฌ PCA-Transformed Features")
            st.dataframe(pca_df.style.format("{:.4f}"))

            # Prediction display
            st.subheader("๐Ÿ”ฎ Prediction")
            if prediction == "Decrease":
                st.markdown(
                    f"<div style='background-color:#fbeaea;color:#9e1c1c;padding:10px;border-radius:8px;'>"
                    f"<b>Next Day BTC Price:</b> {prediction} (Prob: {proba:.2f})</div>",
                    unsafe_allow_html=True
                )
            else:
                st.success(f"Next Day BTC Price: **{prediction}** (Prob: {proba:.2f})")

            # Log prediction
            log = {
                "fetch_date": datetime.today().strftime("%Y-%m-%d"),
                "btc_open": btc["open"],
                "btc_close": btc["close"],
                "sent_pos": aggregated_sentiments[0],
                "sent_neu": aggregated_sentiments[1],
                "sent_neg": aggregated_sentiments[2],
                "sent_pos_pct": aggregated_sentiments[3],
                "sent_neu_pct": aggregated_sentiments[4],
                "sent_neg_pct": aggregated_sentiments[5],
                "macro_gold": macro["gold"]["close"],
                "macro_sp500": macro["sp500"]["close"],
                "macro_dxy": macro["dxy"]["close"],
                "interest_rate": fed["interest_rate"],
                "inflation": fed["inflation"],
                "prediction": prediction,
                "prob": proba,
                "news_cryptonews": " || ".join(news_by_source["CryptoNews"]),
                "news_cryptopotato": " || ".join(news_by_source["CryptoPotato"])
            }

            log_prediction(log)
            st.success("โœ… Logged to predictions_log.csv")